

2013-10-10 version 7.1.5

Phase One
CaptureCore

SDK

7.2.3

Interface Revision 3

 ii

1 Introduction ... 1
1.1 Design Concepts ... 1
1.2 Supported Environments .. 1
1.3 Supported Devices .. 1
1.4 SDK Contents ... 2
1.5 Sample Applications .. 2

1.5.1 SimpleCapture .. 2
2 Overview ... 3

2.1 Namespaces .. 3
2.2 Object Hierarchy .. 3
2.3 Class Hierarchy .. 4
2.4 Reference Counting .. 5
2.5 Multithread Applications .. 5
2.6 Errors, Exceptions and Return Values .. 6
2.7 Value Classes and Types .. 6
2.8 Capabilities ... 7
2.9 Properties .. 7
2.10 Events .. 8
2.11 Progress ... 9
2.12 Log File and Cache Folder .. 10
2.13 Generality and Future Compatibility ... 10
2.14 Development Environment Differences .. 11

2.14.1 .Net ... 11
2.14.2 ObjC ... 11

3 Reference .. 12
3.1 GetCaptureCore .. 12
3.2 ICaptureCore (P1CaptureCore_CaptureCore) .. 13

3.2.1 Version ... 13
3.2.2 Revision ... 14
3.2.3 Terminate ... 14
3.2.4 GetCaptureProviderList ... 15
3.2.5 LogMsgFileName (Get/Set) ... 15
3.2.6 CacheFolderName (Get/Set) .. 16
3.2.7 GetMillisecondCount ... 16
3.2.8 IdToString .. 17
3.2.9 StringToId .. 17

3.3 ICaptureProviderList (P1CaptureCore_CaptureProviderList) ... 19
3.4 ICaptureProvider (P1CaptureCore_CaptureProvider) .. 20

3.4.1 IsAvailable ... 21
3.4.2 GetCameraList ... 22
3.4.3 GetCamera ... 22
3.4.4 kCaptureProviderEvent_CameraAdded ... 22
3.4.5 kCaptureProviderEvent_CameraRemoved .. 23

3.5 ICameraList (P1CaptureCore_CameraList) ... 24
3.5.1 GetCamera ... 24

3.6 ICamera (P1CaptureCore_Camera) .. 26
3.6.1 IsAvailable ... 29
3.6.2 Open ... 29
3.6.3 Close .. 30
3.6.4 IsOpen .. 30
3.6.5 IsConnected.. 31
3.6.6 StartCapture ... 31
3.6.7 PauseCapture .. 32
3.6.8 StopCapture.. 32
3.6.9 IsCapturing ... 33
3.6.10 IsCapturingPaused ... 34
3.6.11 PendingImageCount ... 34
3.6.12 ShutterRelease .. 35
3.6.13 GetNextCaptureImage ... 35
3.6.14 GetCaptureImageQueue ... 36

 iii

3.6.15 MaxCaptureQueueSize (Get/Set) ... 36
3.6.16 RestoreDefault ... 37
3.6.17 kCameraEvent_CameraDisconnected .. 38
3.6.18 kCameraEvent_ImageReceived ... 38
3.6.19 kCameraEvent_PendingImageCountChange ... 38
3.6.20 kCameraEvent_CapturingStarted ... 38
3.6.21 kCameraEvent_CapturingStopped ... 38

3.7 ICaptureImageList (P1CaptureCore_CaptureImageList) ... 39
3.7.1 GetCaptureImage ... 39

3.8 ICaptureImage (P1CaptureCore_CaptureImage) ... 41
3.8.1 Close .. 42
3.8.2 FileSize .. 43
3.8.3 SaveToFile ... 43
3.8.4 SaveToBuffer ... 43
3.8.5 GetImageData .. 44
3.8.6 GetThumbnail .. 44

3.9 IImageData (P1CaptureCore_ImageData) ... 46
3.9.1 ImageType ... 46
3.9.2 ColorType (Get/Set) ... 47
3.9.3 IsColorTypeSupported ... 47
3.9.4 Width ... 48
3.9.5 Height ... 48
3.9.6 PixelCount.. 48
3.9.7 Orientation ... 49
3.9.8 ImageSize ... 49
3.9.9 LineSize ... 49
3.9.10 PixelSize .. 50
3.9.11 LinePadding (Get/Set) .. 50
3.9.12 PixelPadding (Get/Set) ... 51
3.9.13 CopyPixels ... 51
3.9.14 ToBitmap [.Net Only] .. 52
3.9.15 toNSImage [ObjC Only] .. 52

3.10 ICaptureImageThumbnail (P1CaptureCore_CaptureImageThumbnail) .. 53
3.11 ICaptureObject (P1CaptureCore_CaptureObject) ... 54

3.11.1 Id .. 55
3.11.2 GetCapabilityList ... 55
3.11.3 GetPropertyList .. 56
3.11.4 GetCapability ... 56
3.11.5 GetProperty .. 57
3.11.6 kCaptureObjectEvent_CapabilityChange .. 57
3.11.7 kCaptureObjectEvent_PropertyChange ... 57
3.11.8 kCaptureObjectEvent_SettingDescriptorChange ... 57
3.11.9 kCaptureObjectEvent_PropertyAdded ... 58
3.11.10 kCaptureObjectEvent_PropertyRemoved .. 58
3.11.11 kCaptureObjectEvent_CapabilityAdded .. 58
3.11.12 kCaptureObjectEvent_CapabilityRemoved ... 58

3.12 ICapabilityList (P1CaptureCore_CapabilityList) .. 59
3.12.1 GetCapability ... 59
3.12.2 Dump ... 60

3.13 ICapability (P1CaptureCore_Capability) .. 61
3.13.1 Id .. 62
3.13.2 Name .. 63
3.13.3 Unit .. 63
3.13.4 Dump ... 64

3.14 IPropertyList (P1CaptureCore_PropertyList) .. 65
3.14.1 GetProperty .. 65
3.14.2 RestoreDefault ... 66
3.14.3 Refresh ... 66
3.14.4 Dump ... 67

3.15 IProperty (P1CaptureCore_Property) .. 68

 iv

3.15.1 Id .. 70
3.15.2 Name .. 71
3.15.3 Unit .. 71
3.15.4 GetSettingDescriptor .. 72
3.15.5 IsDisabled .. 72
3.15.6 IsDefaultValue ... 73
3.15.7 RestoreDefault ... 73
3.15.8 Refresh ... 73
3.15.9 Dump ... 74

3.16 ISettingDescriptor (P1CaptureCore_SettingDescriptor).. 75
3.16.1 ValueType .. 76
3.16.2 HasDefault ... 76
3.16.3 Default ... 77
3.16.4 HasRange ... 77
3.16.5 RangeMinimum ... 77
3.16.6 RangeMaximum ... 78
3.16.7 HasValueList .. 78
3.16.8 IsValueListSelectOnly ... 79
3.16.9 GetValueList .. 79
3.16.10 ValidateValue .. 79

3.17 ISettingValueList (P1CaptureCore_SettingValueList) .. 81
3.17.1 ValueType .. 81

3.18 ISettingValue (P1CaptureCore_SettingValue) .. 83
3.19 IRootObject (P1CaptureCore_RootObject) ... 85
3.20 IChildObject (P1CaptureCore_ChildObject) ... 86

3.20.1 Parent ... 86
3.21 IObjectList (P1CaptureCore_ObjectList) .. 87

3.21.1 Size ... 87
3.21.2 IsEmpty .. 88
3.21.3 First .. 88
3.21.4 Last ... 88
3.21.5 Next .. 88
3.21.6 Previous ... 89
3.21.7 Insert .. 89
3.21.8 Remove .. 90
3.21.9 Clear ... 90
3.21.10 GetAccess .. 91
3.21.11 HasAccess .. 91

3.22 IValueRead (P1CaptureCore_ValueRead) .. 93
3.22.1 ValueType .. 94
3.22.2 IsUndefined .. 94
3.22.3 Get Value Methods .. 95
3.22.4 Compare ... 98

3.23 IValueWrite (P1CaptureCore_ValueWrite) .. 99
3.23.1 IsReadOnly .. 100
3.23.2 Set Value Methods ... 101

3.24 IErrorSource (P1CaptureCore_ErrorSource) ... 105
3.24.1 GetError ... 105
3.24.2 kEventId_Error .. 105

3.25 IErrorObject (P1CaptureCore_ErrorObject) .. 107
3.25.1 Type ... 107
3.25.2 Number .. 108
3.25.3 TypeName .. 108
3.25.4 Description ... 109
3.25.5 Detail .. 109

3.26 IEventSource (P1CaptureCore_EventSource) ... 110
3.26.1 AddReceiver .. 110
3.26.2 RemoveReceiver .. 111

3.27 IEventReceiver (P1CaptureCore_EventReceiver) ... 113
3.27.1 OnEvent ... 113

 v

3.28 IEventObject (P1CaptureCore_EventObject) .. 115
3.28.1 Id .. 115
3.28.2 NumberOfArguments ... 115
3.28.3 Argument ... 116

3.29 IEventArgument (P1CaptureCore_EventArgument) ... 117
3.30 IProgressSource (P1CaptureCore_ProgressSource) .. 119

3.30.1 GetProgress .. 119
3.30.2 kEventId_ProgressUpdate .. 119

3.31 IProgressStatus (P1CaptureCore_ProgressStatus) ... 120
3.31.1 Id .. 120
3.31.2 Instance .. 121
3.31.3 Description ... 121
3.31.4 Detail .. 122
3.31.5 Unit .. 122
3.31.6 Current ... 123
3.31.7 End ... 123
3.31.8 Percent ... 124
3.31.9 Elapsed Time ... 124
3.31.10 IsDone .. 124
3.31.11 IsCancelled ... 125
3.31.12 CanCancel .. 125
3.31.13 Cancel .. 126

4 Enumeration Reference ... 127
4.1 EnumErrorType .. 127
4.2 EnumValueType ... 127
4.3 EnumListAccess ... 128
4.4 EnumCaptureCoreName .. 128
4.5 EnumImageType .. 128
4.6 EnumColorType ... 128
4.7 EnumImageOrientation .. 129
4.8 EnumCameraType .. 129
4.9 EnumCameraRestore .. 129
4.10 EnumCameraOrientationMode .. 130
4.11 EnumFocusAdjustDiscrete .. 130
4.12 EnumFmcMode ... 130

5 Error Reference ... 132
5.1 CaptureCore Errors .. 132

6 Capability Reference ... 134
6.1 ICamera (P1CaptureCore_Camera) .. 134
6.2 ICaptureImage (P1CaptureCore_CaptureImage) ... 135

7 Property Reference .. 136
7.1 ICaptureProvider (P1CaptureCore_CaptureProvider) .. 136
7.2 ICamera (P1CaptureCore_Camera) .. 137
7.3 ICaptureImage (P1CaptureCore_CaptureImage) ... 143

 1

1 Introduction

Welcome to the Phase One CaptureCore SDK. CaptureCore is a software interface for

communication with all Phase One digital backs and cameras. It is specifically for use in the

capturing and transferring of images to a computer connected to a digital back or camera, as

well as the setup and synchronization of device settings. It consists of a set of generalized

object-oriented classes that support the .NET and ObjC development environments on

Microsoft Windows and Apple Mac OS operating systems.

1.1 Design Concepts

CaptureCore is designed to be general, cross-platform, object-oriented, and thread-safe.

The primary design focus for CaptureCore was generalization. CaptureCore provides a

common interface for different models of digital backs and cameras. For the application

developer, this device-independence means that the same code will work with all supported

devices. In addition, CaptureCore has been designed to support a broad range of applications.

To provide this generality without losing functionality, CaptureCore provides methods by

which an application can check if a specific device supports a feature it wishes to use.

CaptureCore is cross-platform, supporting the development of applications on both Microsoft

Windows and Apple Mac OS operating systems. It currently supports all .NET development

environments on Microsoft Windows (C#, Managed C++, Visual Basic, and others), and

supports ObjC development on Apple Mac OS. CaptureCore adheres as much as possible to

the different coding styles for each development environment, while still maintaining a

common interface across platforms.

CaptureCore is object-oriented, making it easy to use in today’s object-oriented development

environments. In addition, reference-counting is used to automate object destruction.

All classes, methods, and properties in CaptureCore are thread-safe. Thus the application

developer is free to use multi-threading without additional code.

It has been challenging and fun to design CaptureCore and we hope that you enjoy using it in

your application.

1.2 Supported Environments

CaptureCore supports all 32-bit and 64-bit versions of Windows XP, Windows Vista,

Windows 7 and Windows 8. It also supports Apple Mac OS 10.7 and later.

1.3 Supported Devices

The following devices are supported.

Manufacturer Model

Phase One

iXU150, IQ280, IQ260, IQ260 Achromatic, IQ250, IQ180, IQ160, IQ160

Achromatic, IQ140, P65+, P45+, P45+ Achromatic

 2

1.4 SDK Contents

The files included in the SDK are organized in the following folder hierarchy.

┌/Doc Documentation files for all platforms.

├/Win Microsoft Windows specific files.

│ ├/Bin

│ │ │

 Redistributable binary files that provide CaptureCore

functionality.

│ │ └/Drivers

│ │

 Driver files. Some devices require a driver to be

installed.

│ └/Samples  Windows sample applications.

│ └/Net  .Net sample applications

│ └/C#  C# sample applications

│ └/SimpleCapture  C# simple command-line capture application.

└/Mac Apple Mac OS specific files.

 ├/Bin

 │

 Redistributable binary files that provide CaptureCore

functionality.

 └/Samples  Mac OS sample applications.

 └/ObjC  ObjC sample applications

 └/SimpleCapture  ObjC simple command-line capture application.

1.5 Sample Applications

1.5.1 SimpleCapture

The SimpleCapture sample application is a simple command-line capture application. It

demonstrates basic capture functionality, such as enumerating capture devices, plug & play,

capturing images, requesting a remote capture, editing a camera property, and handling of

errors, events and progress status.

 3

2 Overview

CaptureCore consists of a set of class interfaces representing cameras, images, manufacturers,

capabilities, properties, and so on. These are organized in a class hierarchy and are derived

from common base classes – thus many classes share a common set of methods.

Objects (instances of these class interfaces) are organized in an object hierarchy, where most

objects are owned by a parent object, and can have one or more child objects. Reference-

counting is used to automate object destruction, though in both .NET and ObjC this is

handled for the developer by the development runtime. There is a single instance of a top-

level object (ICaptureCore) at the top of the hierarchy, which is retrieved by a call to the

global method GetCaptureCore.

All method calls (including .Net properties) can throw exceptions in the event of an error

condition, such as an invalid parameter, or a communication error with a capture device. In

addition, background threads which encounter errors can inform the application of the error

via events.

Some objects have attributes called capabilities and properties. A capability describes a

conditional feature that is sometimes available, allowing an application to test if an object has

a specific capability before attempting to use it. Properties are settings and information for

the object. Some properties are read-only, and describe things such as a capture device’s

serial number or model name. Other properties are writeable, such as exposure ISO, and may

have a setting descriptor object that describes which values or the range that they can be set

to. Properties are designed to be easily presented to the user via common user-interface

controls, such as an edit, drop-down list, or combination control.

Objects can send events to an application defined event receiver, informing of errors,

captured images, removed devices, and so on. Progress status is also given for tasks that can

take some time.

2.1 Namespaces

In development environments that support namespaces (.NET), CaptureCore classes and

enumerations are declared in P1.CaptureCore (P1::CaptureCore).

2.2 Object Hierarchy

Objects in CaptureCore are organized in a object/data hierarchy embodying the ownership

relationship between objects. Most objects are a child of a parent object that owns the child

object. The top-level object of the hierarchy is a single instance of ICaptureCore, which is

returned by calling the global method GetCaptureCore.

This single ICaptureCore object is the parent of ICaptureProvider objects, which represent a

capture device manufacturer, such as Phase One, or a specific family of devices from a

manufacturer. ICaptureProvider objects are parents to ICamera objects, which represent a

physically connected camera or capture device. ICamera objects are parents to

ICaptureImage objects, which contain a captured image. The entire object hierarchy is shown

below in Figure 1.

 4

Figure 1: CaptureCore Object Hierarchy

There are three principle CaptureCore objects that an application will interact with:

ICaptureProvider, ICamera, and ICaptureImage, which represent manufacturers, devices,

and images respectively. These three objects share common traits, which they inherit from

ICaptureObject. All three have capabilities and properties, can broadcast events, and support

background error reporting.

ICaptureProvider objects provide the application with a list of attached capture devices

(ICamera objects), and send events when new devices are connected or existing devices are

disconnected. There is an ICaptureProvider object for every device API supported by

CaptureCore.

The ICamera class is the fundamental class of CaptureCore. ICamera objects allow the

application to interact with attached capture devices, and to control the capture and transfer of

images. They receive and store captured images (ICaptureImage objects), sending an event

whenever a new image is available. Many device settings can also be set via an ICamera

object. There is an ICamera object for every connected capture device supported by

CaptureCore.

ICaptureImage objects encapsulate the images captured by devices and transferred to the

host. They provide access to image properties and image data, which can be saved to a file or

copied to an application buffer. A thumbnail (ICaptureImageThumbnail) can also be

retrieved for some image types.

2.3 Class Hierarchy

CaptureCore objects are instances of CaptureCore class interfaces. It is through these class

interfaces that CaptureCore is accessed by an application. These class interfaces are

organized in a class hierarchy, where most classes are derived from common base classes. In

this way classes share common methods and functionality. The class hierarchy is shown

below in Figure 2.

ICaptureCore

ICaptureProviderList

ICaptureProvider

ICamera

ICameraList

ICaptureImageList

ICaptureImage

ICapability

IPropertyList

ICapabilityList

IProperty ISettingDescriptor

ISettingValueList

ISettingValue

IProgressStatus

IErrorObject

IEventObject IEventArgument

 5

Figure 2: CaptureCore Class Hierarchy

2.4 Reference Counting

Reference counting is used throughout CaptureCore to automate the life-cycle of all objects.

As long as a reference exists to an object, it exists and its resources are not released by

CaptureCore. When the last reference to an object is released, the object is automatically

destroyed. Reference counting is automated in .Net and ObjC, so applications developed in

those environments do not need to explicitly retain or release references.

A parent object also keeps a reference to all its child objects. When a parent no longer needs

a child object, it releases its reference to the child, and that child no longer has a parent.

Normally the reference held by the parent is the last reference to the child object and it is

immediately destroyed. However, if the application also has a reference to the child object,

the child object continues to exist and becomes an orphan. Calls to the child objects Parent

method will return a NULL reference. Once the application releases its last reference to an

orphaned child object, it is finally destroyed.

2.5 Multithread Applications

All CaptureCore objects and their methods and properties are thread-safe. Thus applications

don’t generally need to use any thread synchronization to use CaptureCore. However, when

several calls to a CaptureCore object are desired to be atomic, the application can still find it

IRootObject

IChildObject IObjectList

IValueRead

IErrorSource

IEventSource

IEventReceiver

IProgressSource

IErrorObject

IEventObject

IProgressStatus

ICaptureObject

IPropertyList

ISettingDescriptor

ISettingValueList

ICapabilityList

ICapability

ICaptureCore

ICaptureProvider

ICamera

ICaptureImageMemoryManager

ICaptureImageList

ICaptureImage

ICameraList

ICaptureProviderList

ISettingValue

IValueWrite

IProperty IEventArgument

IImageData ICaptureImageThumbnail

 6

useful to use a locking mechanism around some CaptureCore calls. It is up to the application

to provide this locking mechanism.

For example, if an application wishes to check if an object is open before calling a method

that only succeeds if it is open, it may wish to put a lock around these two calls, to ensure that

no other application thread closes the object between these two calls. This also requires

placing a lock around all calls to close the object in the application.

CaptureCore uses multiple threads to perform several background tasks. Calls to application

provided event receivers, and other callback interfaces, are performed by background threads.

Thus application implementations of callback interfaces need to be thread-safe with regards

to other code in the application.

2.6 Errors, Exceptions and Return Values

CaptureCore objects generally communicate errors by throwing exceptions. Any method in

CaptureCore can throw an exception if an error occurs. An application should be prepared to

handle exceptions from any call to a CaptureCore method. CaptureCore exception objects are

derived from the IErrorObject class, which contains methods for determining which error

occurred, and description and detail strings for the error. In addition, for each development

environment, CaptureCore exception objects are also derived from the native exception class

for that environment, such as System.Exception in .Net and NSException in ObjC.

Objects of classes derived from IErrorSource, can also report an error though the GetError

method of IErrorSource. This allows such objects to report errors that occur on background

threads, that is errors that do not arise directly from a method call. If an IErrorSource object

is also derived from IEventSource, a kEventId_Error event is posted whenever there is a new

error that can be retrieved by calling GetError. Applications should monitor objects derived

from IErrorSource for the kEventId_Error event, and retrieve the error by calling GetError.

CaptureCore does not use return values as a mechanism for reporting errors. However, many

methods in CaptureCore return pointers or references to objects, and these methods will

return a NULL reference, when the requested object is not available. This is not an error, but

a normal return value for these methods. In the event of a true error, these methods will still

throw an exception. Applications should expect to get a NULL value for any object pointer or

reference returned from a CaptureCore method, and test for NULL before using the object.

2.7 Value Classes and Types

Several CaptureCore classes represent simple values, such as numbers or strings. These value

classes are derived from either IValueRead or IValueWrite, such as the classes ICapability

and IProperty, which represent an object’s capabilities and properties. IValueRead classes

represent read-only values, whereas IValueWrite classes represent values that can both be

read and written. IValueWrite inherits from IValueRead.

Values represented by IValueRead or IValueWrite can be one of several different value types,

defined by the enumeration EnumValueType: a Boolean, 32- and 64-bit signed and unsigned

integers, a floating point, a string, or an enumeration. An enumeration value type is both a 32-

bit signed/unsigned integer and a string at the same time. Regardless of the actual value type

of a value, a string representation can be retrieved for all values. The value type of a value

class can be retrieved by the ValueType method of IValueRead (and IValueWrite).

An application reads or writes the value represented by a value class by calling one of the

GetValue and SetValue methods defined by IValueRead and IValueWrite. These methods will

throw an exception if an incompatible value type is passed to the method.

 7

For many classes, and especially for capabilities and properties, the value type of a value

object is not predefined. Applications should not expect a value object to be of any particular

value type, and should attempt to handle all value types for each and every value object.

2.8 Capabilities

Objects of some classes, specifically those derived from ICaptureObject, can have

capabilities. A capability describes a conditional feature that is sometimes available.

Capabilities allow an application to test if an object has a feature before attempting to use it.

Capabilities are different from properties in that capabilities are always read-only and are

usually only used by the application for conditionally enabling functionality.

Capabilities are represented by the ICapability class, which is derived from IValueRead, and

are organized in a list (ICapabilityList) for each class that supports capabilities. They are

uniquely identified by a capability ID (enumeration value), and a specific capability can be

retrieved by iterating the capability list or calling the GetCapability method.

Capabilities can be of any value type (EnumValueType), such as a number or a string, but

generally they will be a Boolean value. There is no guarantee that a specific capability will be

of a specific value type. An application should be prepared to handle different value types for

every capability. It is recommended that an application always tests a capability’s value type

before using it. When a capability changes value, the owning class will often post an event to

indicate this.

Which capabilities are present is determined by the implementation of the class which has

capability support. The application should not use a feature if the capability representing the

feature is not present for a specific class, or if the capability indicates that the feature is not

supported. Doing so may result in an exception, though often the functionality will just do

nothing.

See the Capability Reference section for a list over all capabilities supported by different

classes.

2.9 Properties

Objects of some classes, specifically those derived from ICaptureObject, can have properties.

A property describes a setting or some user information for the object. Some properties are

read-only, and describe things such as a capture device’s serial number or model name. Other

properties are writeable, such as exposure ISO, and may have a setting descriptor object that

describes which values or the range that they can be set to. Properties are designed to be

easily presented to the user via common user-interface controls, such as an edit, drop-down

list, or combination control.

Properties are represented by the IProperty class, which is derived from IValueWrite, and are

organized in a list (IPropertyList) for each class that supports properties. They are uniquely

identified by a property ID (enumeration value), and a specific property can be retrieved by

iterating the property list or calling the GetProperty method.

Properties can be of any value type, such as a number or a string. There is no guarantee that a

specific property will be of a specific value type. An application should be prepared to handle

different value types for every property. It is recommended that an application always tests a

property’s value type before using it. When a property changes value, the owning class will

often post an event to indicate this.

 8

Properties may have a setting descriptor object (ISettingDescriptor) that describes the values

or the range that they can be set to. Even if the property is read-only it may have a setting

descriptor. When a property is set to a value by an application, the value is validated with the

settings described by its setting descriptor, and an exception is thrown if the value is not

allowed. If no setting descriptor object is present, then there is no limit to what the property

can be set to (within the limits of the value type of the property). Simple setting descriptors

provide a minimum/maximum range for the property. Others provide a list of values that the

property can be set to. This list can be select only, where only values in the list are allowed,

or it could just represent commonly used values, allowing the property to be set to values not

in the list. When a setting descriptor changes value, the owning class will often post an event

to indicate this.

Some properties have default values (defined by the setting descriptor) and can be restored to

their default. Properties can have an undefined value (see IsUndefined), if the current value is

unknown or not available. This often just indicates that the property has not been set yet. The

property can also be disabled (see IsDisabled), if the property is currently not accessible or

unavailable for some reason. A disabled property is automatically read-only, and may even

throw an exception if read. A property can be disabled or enabled at any point in time,

depending upon the cause. An event is generally posted when this occurs.

Generally, properties are automatically synchronized with the source or device that owns the

property, but not always, especially if it will negatively affect performance, or if it is not

technically possible to do so. In this case, an application can call the Refresh method to

request a manual synchronization from the property source.

When using properties, an application has two possibilities: it can request specific properties

using their property IDs and handling if the property doesn’t exist, or it can support all

properties exposed by an object, without even examining the property ID. The first method

allows specific properties to be picked out and presented to the user. The application must

still be prepared to handle all value types for each property. The second method displays all

available properties in a generic manner, using the strings contained within the property

object to describe the property. Since an application may not be aware of all possible property

IDs at the time of creation, the second method is more generic and future compatible. Both

methods can of course be combined, handling some properties differently, while still listing

all remaining.

See the Property Reference section for a list over all properties supported by different classes.

2.10 Events

Objects derived from the IEventSource class can post events. Events typically represent

changes in state for the object and are represented by an IEventObject object. Each event is

uniquely identified by an event ID (enumeration value). The possible event IDs for each

object are described in each class description. Events can also include event arguments,

which are simple values represented by an IEventArgument object.

An application subscribes to events by adding an event receiver to an IEventSource object.

An event receiver is an application implemented class that implements the IEventReceiver

interface. The IEventReceiver interface has one method: OnEvent, which is called when

delivering events to the event receiver. The application is free to implement the

IEventReceiver interface in combination with other interfaces, or as part of another

application class. Typically, an application implements the IEventReceiver interface for each

class that will receive events.

 9

Applications call the AddReceiver or RemoveReceiver methods of an IEventSource object to

subscribe or unsubscribe to events from that object. An application can chose to subscribe to

specific events, by passing the desired event ID to AddReceiver, or to subscribe to all events

by passing kEventId_All.

All events are asynchronous. That is events are delivered by a separate thread than that which

posted the event. Thus an event receiver will receive the event shortly after it occurred. This

delay is usually very small, in the order of microseconds, but can vary depending upon how

busy the computer is. An event dispatch thread is created for each subscribed event receiver.

Thus an event receiver cannot delay the delivery of events to other event receivers. Events for

a single event receiver are always delivered sequentially in order, and an event receiver will

not receive a new event before returning from a previous call to OnEvent.

In order to keep the flow of events as timely as possible, it is the responsibility of the

application’s IEventReceiver implementation to handle each event promptly, and to not call

any methods that may block indefinitely. Further, a call to RemoveReceiver will block until

an event receiver’s OnEvent method has returned, and this could lead to a deadlock situation.

Thus, applications should avoid waiting on threads in their OnEvent implementation, if the

same thread may call RemoveReceiver. For example, if an OnEvent implementation waits on

the main thread to perform some action, and the main thread calls RemoveReceiver, then both

threads end up waiting on each other, and a deadlock occurs.

Although events are dispatched sequentially to each receiver, there is no guarantee regarding

the order that events are sent from any part of CaptureCore, due to the multithreaded nature

of CaptureCore. Thus the application should avoid making any assumptions about the order

of events, or have cross-dependencies between events. For example, a progress event of

100% may not always be sent, before an image arrived event, and may come slightly out of

order or not at all. Further, an image arrived event may not be sent, following progress events

for that image, if the image is cancelled before completion.

Generally, each event is self-contained, and is designed to communicate only a single piece

of information, and event handling code should be designed similarly. For example, only use

progress events to update a progress control, without any additional actions. Since event

delivery can be delayed, the state reported by the event may not be current. Event handling

code may wish to verify the state reported by an event, before taking the appropriate action.

2.11 Progress

Objects derived from IProgressSource, such as ICamera objects, can inform the application

of the progress status of different tasks. The progress status of a task is described by

IProgressStatus objects, which are queued by the IProgressSource object. An

IProgressSource object posts an kEventId_ProgressUpdate event when a new

IProgressStatus object is queued, which an application can retrieve by calling the

GetProgress method of the IProgressSource class.

More than one task can be active at the same time. The Id and Instance members of

IProgressStatus can be used to differentiate between different progress tasks. Id returns an

enumeration value which specifies the kind of progress the IProgressStatus object describes,

such as image capture or file saving progress. Instance returns an unique number for each

progress task. No two progress tasks will have the same instance number.

IProgressStatus objects contain many members which provide string descriptions of the

progress task, as well as how much of the task is completed, and how long the task has been

 10

running. In addition, it is possible for some tasks to cancel the task, by calling the Cancel

member of the IProgressStatus class.

IProgressStatus objects are queued, and therefore there is a time lag between when the status

was generated and when it is retrieved by the application. The application should therefore

try to handle progress status events as quickly as possible, to minimize this lag.

The application should be careful to avoid making any assumptions about the delivery of

progress status for a specific task. For example a task may not always reach 100%, due to an

error or if it is cancelled. Further, no guarantee is made about the order of progress events

with other CaptureCore events. Progress status should be regarded as informational only, and

used for display purposes and not to control the state of the application.

2.12 Log File and Cache Folder

CaptureCore can be setup to log messages regarding the internal activities of CaptureCore to

a log file. Log messages can be useful for tracking the internal operations carried out by

CaptureCore, as well as logging errors and warnings. Log messages include the date, time

and thread ID for each message. The LogMsgFileName methods of the ICaptureCore class

can be used to set or clear the log file’s filename. If not filename is set, which is the default

state, then no log file is created. The application is responsible for ensuring that the path to

the log file is valid, and that the application has file creation rights for the provided path.

Note that CaptureCore appends to an existing file, so given enough time the log file can

become quite large.

CaptureCore can cache certain object data and settings in order to increase performance and

provide setting persistency. Cache files are created for each device within an application

specified cache folder. The CacheFolderName methods of the ICaptureCore class can be

used to set or clear the cache folder path. If no cache folder is specified, which is the default,

then no cache files are used. It is highly recommended to define a cache folder for

applications using CaptureCore. The application is responsible for ensuring that the provided

folder path is valid, and that the application has both folder an file creation rights.

2.13 Generality and Future Compatibility

CaptureCore supports many different capture devices from several vendors. In order to

handle all the possible variations that exist now or in the future, CaptureCore is designed with

a focus on generality. Many features of CaptureCore are dynamic, such as capabilities,

properties, and value types.

An application will generally need to do a bit more work in order to support this generality,

such as checking for the value type of a value object, or testing for a capability before using a

specific feature. However, the advantage is great. Once the application code is written, few if

any changes will be necessary to support new devices in the future, or to be compatible with

future changes in CaptureCore.

It is highly recommended that application developers embrace the generality of CaptureCore

when implementing the applications that will use it. They will gain much in terms of future

compatibility. Assumptions about how CaptureCore works, based upon observation, should

be avoided. For example, one cannot assume that the value type of a specific property will

always be the same for all devices or all versions of CaptureCore. Nor can one assume that

events will always arrive or that they will arrive in a certain order.

It is also a good practice to always test the return values of every call, and to be prepared for

exceptions from any call.

 11

2.14 Development Environment Differences

There are a few differences from the general documentation for each of the development

environments.

2.14.1 .Net

All exceptions thrown by CaptureCore are instances of the CaptureCoreException class. A

CaptureCoreException object implements the IErrorObject interface and also inherits from

System.Exception. This is because .Net requires all exception objects to be derived from

System.Exception. Thus CaptureCoreException objects provide both the IErrorObject

methods documented in this document and the .Net System.Exception class methods.

2.14.2 ObjC

All CaptureCore class names are preceded by a P1CaptureCore_ prefix to avoid conflicting

with other names in the global namespace of the application. This is done since ObjC does

not support namespaces.

 12

3 Reference

3.1 GetCaptureCore

GetCaptureCore initializes CaptureCore and returns the top-level ICaptureCore object in the

CaptureCore object hierarchy, through which all CaptureCore functionality is accessed.

Syntax

.Net
C# static ICaptureCore CaptureCoreEntry.GetCaptureCore()

C++ static ICaptureCore^ CaptureCoreEntry::GetCaptureCore()

VB Shared Function CaptureCoreEntry.GetCaptureCore As ICaptureCore

ObjC
@interface P1CaptureCore_CaptureCore

+ (id) getCaptureCore

Return Value

The top-level ICaptureCore object of the CaptureCore object hierarchy. A NULL reference is

returned if CaptureCore cannot be initialized. There is only a single ICaptureCore object in

the CaptureCore object hierarchy, so subsequent calls to this function will return the same

object.

 13

3.2 ICaptureCore (P1CaptureCore_CaptureCore)

The ICaptureCore class provides access to all the functionality of CaptureCore. Only a single

instance of an ICaptureCore object exists, and is retrieved by calling GetCaptureCore.

ICaptureCore is a parent to ICaptureProvider (ICaptureProviderList) objects.

Members

Version Returns the version string of the CaptureCore

assembly/framework file.

Revision Returns the interface revision number of the CaptureCore

assembly/framework file.

Terminate Releases all CaptureCore resources. Once Terminate is called,

CaptureCore can no longer be used.

GetCaptureProviderList Returns a list of all supported capture device providers.

LogMsgFileName

(Get/Set)
Get or set an optional filename for storing log messages

generated by CaptureCore.

CacheFolderName

(Get/Set)
Get or set an optional cache folder for storing any cached data

files that CaptureCore uses for improving performance.

GetMillisecondCount Returns the current time in milliseconds, used internally by

CaptureCore.

IdToString Converts an ID enumeration value to its string representation.

StringToId Converts a string representation returned by IdToString back

to its ID enumeration value.

3.2.1 Version

Version returns the version string of the CaptureCore assembly/framework file.

Syntax

.Net
C# string Version { get; }

C++
property System::String^ Version

 { System::String^ get(); }

VB ReadOnly Property Version As String

ObjC
- (NSString *) version

Return Value

A string containing the major, minor, revision, and build numbers for the CaptureCore

assembly/framework. The string is a dot delimited string of numbers in the form of

mmm.nnn.rrr.bbb, where mmm is the major version, nnn is the minor version, rrr is the

interface revision, and bbb is the build number. The version string is static and doesn’t

change dynamically.

Remarks

The version number is used internally by Phase One for tracking the version of CaptureCore,

and corresponds to the file version of the CaptureCore assembly/framework. The major,

 14

minor and build numbers generally correspond to application or SDK releases. Only the

interface revision number represents an actual iteration in the CaptureCore specification.

Applications can use the Revision method to retrieve directly the interface revision as a

number.

3.2.2 Revision

Revision returns the interface revision number of the CaptureCore assembly/framework file.

The interface revision number is directly related to the CaptureCore specification described

by this document. This number can be used to ensure that the CaptureCore version being used

corresponds to what the application was designed for.

Syntax

.Net
C# ushort Revision { get; }

C++
property System::UInt16 Revision

 { System::UInt16 get(); }

VB ReadOnly Property Revision As UShort

ObjC
- (uint16_t) revision

Return Value

The interface revision number of the CaptureCore assembly/framework file. The revision

value is static and doesn’t change dynamically.

3.2.3 Terminate

Terminate releases all resources used by CaptureCore objects. Calling this method is

optional, and is called on the application’s behalf when the application exits. Applications

can use this method to explicitly control the release of CaptureCore resources. Once

Terminate is called, CaptureCore can no longer be used, until the application is restarted.

Syntax

.Net
C# void Terminate()

C++ void Terminate()

VB Sub Terminate

ObjC
- (void) terminate

Remarks

Normally the resources used by any existing CaptureCore objects are automatically released

when the objects no longer exist, that is when no references to those objects remain. A single

instance of ICaptureCore persists even if it is no longer in use, and that instance may also

hold references to ICaptureProvider objects, which likewise may hold references to ICamera

objects, and so on. These persistent objects are only released when the application exits.

Alternatively, an application can call Terminate to release the resources held by these

persistent objects when they are no longer needed. Some objects may continue to exist, but

any significant resources held by them will be released. Any remaining objects will become

unusable, and no part of CaptureCore can be used, before the application is restarted.

 15

3.2.4 GetCaptureProviderList

GetCaptureProviderList returns a ICaptureProviderList object containing ICaptureProvider

objects representing all supported capture device providers. An ICaptureProvider object

could represent capture devices from different manufacturers, such as Phase One, or different

protocols for devices from the same manufacturer.

Syntax

.Net
C# ICaptureProviderList GetCaptureProviderList()

C++ ICaptureProviderList^ GetCaptureProviderList()

VB Function GetCaptureProviderList As ICaptureProviderList

ObjC
- (P1CaptureCore_CaptureProviderList *) getCaptureProviderList

Return Value

An ICaptureProviderList object containing all ICaptureProvider objects that are supported

by this instance of ICaptureCore. A NULL reference or an empty list is returned if no

providers are supported.

Remarks

All ICaptureProvider objects are generally created during startup, or during the first call to

GetCaptureCore or GetCaptureProviderList. All providers that are successfully created and

initialized are returned in the provider list. After initialization the list is static – providers will

not be added or removed from the list.

3.2.5 LogMsgFileName (Get/Set)

LogMsgFileName get or sets an optional filename for storing log messages generated by

CaptureCore.

Syntax

.Net

C#
string GetLogMsgFileName()

void SetLogMsgFileName(string fileName)

C++
System::String^ GetLogMsgFileName()

void SetLogMsgFileName(System::String^ fileName)

VB
Function GetLogMsgFileName As String

Sub SetLogMsgFileName(fileName As String)

ObjC
- (NSString *) logMsgFileName

- (void) setLogMsgFileName: (NSString *) fileName

Parameters (Set)

fileName Path to the log file that CaptureCore will write log messages to.

An empty path or a NULL reference will clear the current file

name, and disable the writing of log messages to a file.

Return Value (Get)

The path to the file that is currently set as the CaptureCore log file. A NULL reference or an

empty path is returned if the writing of log messages is currently disabled.

 16

Remarks

CaptureCore writes log messages to the indicated file in Unicode format, and always appends

to the current file’s contents. Note that the file size is not limited by CaptureCore and may

grow quite large over a long period of time.

Log messages include the date, time and thread ID for each message. Log messages can be

useful for tracking the internal operations carried out by CaptureCore, as well as logging

errors and warnings.

3.2.6 CacheFolderName (Get/Set)

CacheFolderName gets or set an optional cache folder for storing any cached data files that

CaptureCore uses for improving performance.

Syntax

.Net

C#
string GetCacheFolderName()

SetCacheFolderName(string folderName)

C++
System::String^ GetCacheFolderName()

void SetCacheFolderName(System::String^ folderName)

VB
Function GetCacheFolderName As String

Sub SetCacheFolderName(folderName As String)

ObjC
- (NSString *) cacheFolderName

- (void) setCacheFolderName: (NSString *) folderName

Parameters (Set)

folderName Path to the folder to store CaptureCore cache files in. An empty

path or a NULL reference will clear the current folder name,

and disable the storing of cache files.

Return Value (Get)

The path to the folder that is the current cache folder for CaptureCore. A NULL reference or

an empty path is returned if storing cache files is currently disabled.

Remarks

CaptureCore requires write access to the cache folder. In addition to creating cache files,

CaptureCore will create subfolders to organize the files. It is not necessary to specify a cache

folder for the proper operation of CaptureCore.

Cache files store data that can improve performance, such as storing calibration data for a

specific device so that it doesn’t need to read the calibration data every time the device

connects. Cache files may also contain capture settings for the device that are not persisted on

the device.

3.2.7 GetMillisecondCount

GetMillisecondCount returns the current time in milliseconds, used internally by

CaptureCore.

 17

Syntax

.Net
C# uint GetMillisecondCount()

C++ System::UInt32 GetMillisecondCount ()

VB Function GetMillisecondCount As UInteger

ObjC
- (uint32_t) getMillisecondCount

Return Value

Time in milliseconds used by CaptureCore internally. The time returned is relative to a fixed

point in time, and should not be used to determine the absolute time.

3.2.8 IdToString

IdToString converts an ID enumeration value to its string representation.

Syntax

.Net
C# string IdToString(uint idValue)

C++ System::String^ IdToString(System::UInt32 idValue)

VB Function IdToString(idValue As UInteger) As String

ObjC
- (NSString *) idToString: (uint32_t) idValue

Parameters

idValue The enumeration value of the ID to convert to a string.

Generally these are capability or property IDs, documented in

the capability and property reference sections.

Return Value

A string representation for the enumeration value given by idValue. A string representation is

the name of the enumeration as a string. For example, the string “kCameraProperty_Model”

is the string representation for the enumeration value kCameraProperty_Model.

If no string representation exists for idValue, the method returns an empty string or a NULL

reference.

3.2.9 StringToId

StringToId converts a string representation returned by IdToString back to its ID enumeration

value.

Syntax

.Net
C# StringToId(string strId)

C++ void StringToId(System::String^ strId)

VB Function StringToId(strId As String) As UInteger

ObjC
- (uint32_t) stringToId: (NSString *) strId

 18

Parameters

strId A string returned by IdToString, or a string representation of an

ID enumeration value, typically a capability or property ID

enumeration value. A string representation is just the name of

the enumeration as a string. For example, the string

“kCameraProperty_Model” is the string representation for the

enumeration value kCameraProperty_Model.

Return Value

The ID enumeration value corresponding to strId. If no enumeration value exists for strId, the

method returns 0.

 19

3.3 ICaptureProviderList (P1CaptureCore_CaptureProviderList)

The ICaptureProviderList class is a list container for ICaptureProvider objects. It is a child

object of ICaptureCore, and inherits from IChildObject and IObjectList.

Members

Inherited from IChildObject

Parent Returns the parent ICaptureCore object of this object.

Inherited from IObjectList

Size Returns the number of ICaptureProvider items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first ICaptureProvider item in the list.

Last Returns a reference to the last ICaptureProvider item in the list.

Next Returns a reference to the next ICaptureProvider item in the list following a

specified ICaptureProvider item already in the list.

Previous Returns a reference to the previous ICaptureProvider item in the list preceding

a specified ICaptureProvider item already in the list.

Insert Inserts a new item in front of another specified ICaptureProvider item in the

list. Requires insert access rights.

Remove Removes a specified ICaptureProvider item from the list. Requires remove

access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess Returns the access rights for this list as a bitmask of EnumListAccess values.

HasAccess Returns true if the list allows the specified access rights.

 20

3.4 ICaptureProvider (P1CaptureCore_CaptureProvider)

The ICaptureProvider class represents a supported capture device provider. It could represent

capture devices from different manufacturers, such as Phase One, or different protocols for

devices from the same manufacturer.

ICaptureProvider is a child object of ICaptureCore, and inherits from IChildObject,

ICaptureObject, IErrorSource, and IEventSource. It is a parent to ICamera (ICameraList),

ICapability (ICapabilityList), and IProperty (IPropertyList) objects.

Members

IsAvailable Returns true if the ICaptureProvider object is currently available to

be used. Unavailable objects throw an exception if any method other

than this method is called.

GetCameraList Returns a list of ICamera objects for the currently attached cameras

for this provider.

GetCamera Returns the ICamera object corresponding to a specified camera ID.

Inherited from IChildObject

Parent Returns the parent ICaptureCore object of this object.

Inherited from ICaptureObject

Id Returns an unique ID representing the ICaptureProvider object.

GetCapabilityList Returns a reference to a ICapabilityList object containing all

ICapability objects for this ICaptureProvider object.

GetPropertyList Returns a reference to a IPropertyList object containing all IProperty

objects for this ICaptureProvider object.

GetCapability Returns a reference to an ICapability object for this ICaptureProvider

object, with a specified capability ID.

GetProperty Returns a reference to an IProperty object for this ICaptureProvider

object, with a specified property ID.

Inherited from IErrorSource

GetError Returns the next IErrorObject object, if any, for the ICaptureProvider

object.

Inherited from IEventSource

AddReceiver Attaches an IEventReceiver object to receive events (IEventObject)

from the ICaptureProvider object.

RemoveReceiver Detaches a previously attached IEventReceiver object so that it no

longer receives events (IEventObject) from the ICaptureProvider

object.

Events

General (EnumCaptureProviderEventId)

kCaptureProviderEvent_CameraAdded A camera object has been added to the camera list.

kCaptureProviderEvent_CameraRemoved A camera object has been removed from the camera list.

 21

Inherited from ICaptureObject (EnumCaptureObjectEventId)

kCaptureObjectEvent_CapabilityChange
A capability’s value has changed. The first argument is

the ID of the changed capability.

kCaptureObjectEvent_PropertyChange
A property’s value has changed. The first argument is the

ID of the changed property.

kCaptureObjectEvent_SettingDescriptorChange
A property’s setting descriptor has changed. The first

argument is the ID of the changed property.

kCaptureObjectEvent_PropertyAdded
One or more new properties have been added. The

argument list contains the IDs of the new properties.

kCaptureObjectEvent_PropertyRemoved
One or more properties have been removed. The

argument list contains the IDs of the removed properties.

kCaptureObjectEvent_CapabilityAdded
One or more new capabilities have been added. The

argument list contains the IDs of the new capabilities.

kCaptureObjectEvent_CapabilityRemoved

One or more capabilities have been removed. The

argument list contains the IDs of the removed

capabilities.

Inherited from IErrorSource (EnumGeneralEventId)

kEventId_Error

An error has occurred on a background thread. Indicates

that a new IErrorObject object has been queued by this

object.

Inherited from IEventSource (EnumGeneralEventId)

kEventId_All
Used for subscribing or unsubscribing to all events via

AddReceiver or RemoveReceiver.

3.4.1 IsAvailable

IsAvailable returns true if the ICaptureProvider object is currently available to be used. Even

if a capture provider object is created and initialized it may still not be currently available.

Some capture device types may only be available to one application at a time, or may require

certain files or services to be installed. In these cases IsAvailable will return false.

Syntax

.Net
C# bool IsAvailable()

C++ bool IsAvailable()

VB Function IsAvailable As Boolean

ObjC
- (BOOL) isAvailable

Return Value

True if the ICaptureProvider object is currently available for use.

Remarks

Unavailable objects throw an exception if any method other than IsAvailable is called.

The return value of IsAvailable is constant for any instance of an ICaptureProvider object, so

IsAvailable may be checked just once for each ICaptureProvider. The availability of each

ICaptureProvider object is determined during CaptureCore initialization. Thus if a provider

is not available, and the conditions preventing its availability are removed, CaptureCore must

be unloaded and restarted before IsAvailable will return true.

 22

3.4.2 GetCameraList

GetCameraList returns a list of ICamera objects for the currently attached cameras supported

by this provider.

Syntax

.Net
C# ICameraList GetCameraList()

C++ ICameraList^ GetCameraList()

VB Function GetCameraList As ICameraList

ObjC
- (P1CaptureCore_CameraList *) getCameraList

Return Value

An ICameraList object containing an ICamera object for each currently attached camera that

is supported by this ICaptureProvider. A NULL reference or an empty list is returned if no

cameras are connected.

Remarks

The ICameraList object returned is a copy of an internal camera list. This internal camera list

is dynamic and can change as cameras are added or removed. When the internal list changes,

a kCaptureProviderEvent_CameraAdded or kCaptureProviderEvent_CameraRemoved event

is sent by the ICaptureProvider, informing the application that a new instance of the

ICameraList object is available.

3.4.3 GetCamera

GetCamera returns an ICamera object corresponding to a specified camera ID in the camera

list of this ICaptureProvider.

Syntax

.Net
C# ICamera GetCamera(uint cameraID)

C++ ICamera^ GetCamera(System::UInt32 cameraID)

VB Function GetCamera(cameraID As UInteger) As ICamera

ObjC
- (P1CaptureCore_Camera *) getCamera: (uint32_t) cameraID

Parameters

cameraID Numerical ID of the ICamera object to return. The ID

corresponds to the value returned by the ICamera Id member.

Return Value

The ICamera object corresponding to the cameraID parameter. If no matching camera object

is found, then a NULL reference is returned.

3.4.4 kCaptureProviderEvent_CameraAdded

This event is posted by the ICaptureProvider object when a new ICamera object is added to

the camera list of the ICaptureProvider object.

 23

Arguments

0 [Optional] The camera ID of the ICamera object that was added to the camera

list. This argument may not always be present.

3.4.5 kCaptureProviderEvent_CameraRemoved

This event is posted by the ICaptureProvider object when an existing ICamera object is

removed from the camera list of the ICaptureProvider object.

Arguments

0 [Optional] The camera ID of the ICamera object that was removed from the

camera list. This argument may not always be present.

 24

3.5 ICameraList (P1CaptureCore_CameraList)

The ICameraList class is a list container for ICamera objects. It is a child object of

ICaptureProvider, and inherits from IChildObject and IObjectList.

The ICameraList object returned by the ICaptureProvider method GetCameraList is a copy

of an internally maintained camera list. This internal list can change dynamically in response

to method calls or events, such as a camera being connected or disconnected. Since the

returned list is a copy it doesn’t change dynamically. This protects the application from issues

that can arise when iterating through a list that it also changing during the iteration. The

ICaptureProvider object sends an event when its internal camera list changes, thus allowing

the application to retrieve a new copy if desired.

Members

GetCamera Returns the ICamera object corresponding to a specified camera ID.

Inherited from IChildObject

Parent Returns the parent ICaptureProvider object of this object.

Inherited from IObjectList

Size Returns the number of ICamera items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first ICamera item in the list.

Last Returns a reference to the last ICamera item in the list.

Next
Returns a reference to the next ICamera item in the list following a specified

ICamera item already in the list.

Previous
Returns a reference to the previous ICamera item in the list preceding a

specified ICamera item already in the list.

Insert
Inserts a new item in front of another specified ICamera item in the list.

Requires insert access rights.

Remove Removes a specified ICamera item from the list. Requires remove access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess Returns the access rights for this list as a bitmask of EnumListAccess values.

HasAccess Returns true if the list allows the specified access rights.

3.5.1 GetCamera

GetCamera returns an ICamera object corresponding to a specified camera ID in the camera

list.

Syntax

.Net
C# ICamera GetCamera(uint cameraID)

C++ ICamera^ GetCamera(System::UInt32 cameraID)

VB Function GetCamera(cameraID As UInteger) As ICamera

ObjC
- (P1CaptureCore_Camera *) getCamera: (uint32_t) cameraID

 25

Parameters

cameraID Numerical ID of the ICamera object to return. The ID

corresponds to the value returned by the ICamera Id member.

Return Value

The ICamera object corresponding to the cameraID parameter. If no matching camera object

is found, then a NULL reference is returned.

 26

3.6 ICamera (P1CaptureCore_Camera)

The ICamera class represents an attached capture device and provides capture setup and

control methods.

ICamera is a child object of ICaptureProvider, and inherits from IChildObject,

ICaptureObject, IErrorSource, IEventSource, and IProgressSource. It is a parent to

ICaptureImage (ICaptureImageList), ICapability (ICapabilityList), IProperty (IPropertyList),

and IProgressStatus objects.

If the ICamera object has the kCameraProperty_HostStorageCapacity property, then the

application will need to set the property to indicate the amount of disk space that is available

for storage of images. Such devices generally disable capture, when the amount of host

storage space is insufficient to store any further images.

The ICamera class and is the fundamental class in CaptureCore. ICamera objects are used for

communicating and controlling a capture device, and for capturing and transferring images

from it.

ICamera objects can be in various states. When an ICamera object is first retrieved from its

parent ICaptureProvider object, it is not yet open. The device may in fact not be available, if

it is in use by another application (see IsAvailable). The application cannot communicate with

the device before calling Open. Once Open is called, an application can get and set properties

on the device, and begin image capture.

To begin capturing, the application must first call StartCapture. The device will

automatically capture and transfer images to the host, whenever the shutter release is pressed

physically on the device or when the ShutterRelease method is called. To stop capturing and

release all capture related resources, the application calls the StopCapture method. Capturing

will also stop if an error occurs. Finally, the application can also pause capturing, which

temporarily disables the shutter and optionally pauses image transfer without doing a full

stop, by calling the PauseCapture method. The events kCameraEvent_CapturingStarted and

kCameraEvent_CapturingStopped are posted by the ICamera object when its capturing state

changes.

Captured images are placed in a ICaptureImageList object and can be retrieved by the

GetNextCaptureImage or GetCaptureImageQueue methods. During capture and transfer

images can be queued in the capture device, or be in transfer. Images that are not yet in the

capture image queue are called pending images, and the number of pending images is

returned by the PendingImageCount method. The kCameraEvent_PendingImageCount

change event is posted when the number of pending images changes.

At any point in time, the capture device can be physically removed from the host. When this

occurs the IsConnected method returns false, and a kCameraEvent_CameraDisconnected

event is posted. After a device is disconnected, it may no longer be used an only the methods

StopCapture and Close can be called. If the same device is reconnected, a new ICamera

object is created to represent the device.

Members

IsAvailable Returns true if the ICamera object is available for use.

Open
Opens the ICamera object and initializes communication with

the attached device. Allows access to other members.

 27

Close
Closes the ICamera object, disconnecting from the attached

device, and releasing all resources.

IsOpen
Returns true if the ICamera object is open, that is if a previous

call to Open has succeeded, and Close has not yet been called.

IsConnected
Returns true if the device associated with the ICamera object is

still connected to the host computer.

StartCapture
Enables the device to capture images, and starts the transfer of

captured images from the device to the host computer.

PauseCapture

If capturing is started, disables the capturing of images and

optionally their transfer, without releasing all resources for

capturing. Call StartCapture again to continue the capture and

transfer of images.

StopCapture

If capturing is started, disables the capturing of images,

optionally transfers any outstanding images, and finally

releases all resources related to capturing.

IsCapturing
Returns true if the ICamera object is ready to capture and

transfer images, following a call to StartCapture.

IsCapturingPaused
Returns true if the ICamera object is ready to capture images,

but is currently paused following a call to PauseCapture.

PendingImageCount
Returns the number of images in the capture device’s internal

buffer or being transferred to the captured image queue.

ShutterRelease Requests that the capture device capture an image.

GetNextCaptureImage
Retrieves the next captured image from the captured image

queue. The returned image is removed from the queue.

GetCaptureImageQueue
Returns the captured image queue as an ICaptureImageList

object.

MaxCaptureQueueSize

(Get/Set)
Gets or sets the maximum captured image queue size.

RestoreDefault

Restores all properties and settings to their default value for a

specified component of the device. Not all device settings are

necessarily represented by properties. This method, if supported

ensures all settings are restored.

Inherited from IChildObject

Parent Returns the parent ICaptureProvider object of this object.

Inherited from ICaptureObject

Id Returns an unique ID representing the ICamera object.

GetCapabilityList
Returns a reference to a ICapabilityList object containing all

ICapability objects for this ICamera object.

GetPropertyList
Returns a reference to a IPropertyList object containing all

IProperty objects for this ICamera object.

 28

GetCapability
Returns a reference to an ICapability object for this ICamera

object, with a specified ID.

GetProperty
Returns a reference to an IProperty object for this ICamera

object, with a specified ID.

Inherited from IErrorSource

GetError
Returns the next IErrorObject object, if any, for the ICamera

object.

Inherited from IEventSource

AddReceiver
Attaches an IEventReceiver object to receive events

(IEventObject) from the ICamera object.

RemoveReceiver

Detaches a previously attached IEventReceiver object so that it

no longer receives events (IEventObject) from the ICamera

object.

Inherited from IProgressSource

GetProgress
Returns the next IProgressStatus object in the progress queue

for this ICamera object.

Events

General (EnumCameraEventId)

kCameraEvent_CameraDisconnected
The device associated with the camera has been

disconnected.

kCameraEvent_ImageReceived A new image object has been added to the image list.

kCameraEvent_PendingImageCountChange The pending image count has changed.

kCameraEvent_CapturingStarted Image capture has been started.

kCameraEvent_CapturingStopped Image capture has been stopped.

Inherited from ICaptureObject (EnumCaptureObjectEventId)

kCaptureObjectEvent_CapabilityChange
A capability’s value has changed. The first argument is

the ID of the changed capability.

kCaptureObjectEvent_PropertyChange
A property’s value has changed. The first argument is the

ID of the changed property.

kCaptureObjectEvent_SettingDescriptorChange
A property’s setting descriptor has changed. The first

argument is the ID of the changed property.

kCaptureObjectEvent_PropertyAdded
One or more new properties have been added. The

argument list contains the IDs of the new properties.

kCaptureObjectEvent_PropertyRemoved
One or more properties have been removed. The

argument list contains the IDs of the removed properties.

kCaptureObjectEvent_CapabilityAdded
One or more new capabilities have been added. The

argument list contains the IDs of the new capabilities.

kCaptureObjectEvent_CapabilityRemoved

One or more capabilities have been removed. The

argument list contains the IDs of the removed

capabilities.

Inherited from IErrorSource (EnumGeneralEventId)

kEventId_Error

An error has occurred on a background thread. Indicates

that a new IErrorObject object has been queued by this

object.

Inherited from IEventSource (EnumGeneralEventId)

 29

kEventId_All
Used for subscribing or unsubscribing to all events via

AddReceiver or RemoveReceiver.

Inherited from IProgressSource (EnumGeneralEventId)

kEventId_ProgressUpdate
Indicates that a new IProgressStatus object has been

queued by this object.

Phase One device specific (EnumPhaseOneCameraEventId)

kP1CameraEvent_MacCreateLocalIsochPortError

Mac OS only. There is insufficient memory below the

2GB memory boundary for the operating system to setup

an isochronous FireWire transfer port between the host

and the device.

Progress Status

General (EnumCameraProgressId)

kCameraProgress_Open Progress status for the Open method.

kCameraProgress_ImageTransfer Progress status for image transfers.

3.6.1 IsAvailable

IsAvailable returns true if the ICamera object is currently available to be used. Even if a

camera object is created and initialized it may still not be currently available. For example,

some capture devices may only be available to one application at a time. In these cases

IsAvailable will return false.

Syntax

.Net
C# bool IsAvailable()

C++ bool IsAvailable()

VB Function IsAvailable As Boolean

ObjC
- (BOOL) isAvailable

Return Value

True if the ICamera object is currently available for use.

Remarks

Unavailable objects throw an exception if any method other than IsAvailable is called.

Following a successful call to Open, the ICamera object will remain available for use by the

process that called Open. IsAvailable will return true as long as the ICamera object remains

opened (IsOpen returns true) and connected (IsConnected returns true). If an ICamera object

is already open in another process, IsAvailable will generally return false, and no other

methods including Open can be called on the object.

IsAvailable returns false if the associated device is disconnected (IsConnected returns true),

even if the ICamera object is currently open.

3.6.2 Open

Open opens the ICamera object and initializes communication with the attached device. This

reserves the device for use by the application.

Open must be called before many of the other class members, such as StartCapture,

PauseCapture, StopCapture, ShutterRelease and so on. It is generally not necessary to call

 30

Open for accessing inherited members like GetCapability and GetProperty. However, the

return result from calling some methods may differ depending upon whether the device is

open or not. See the documentation for other ICamera members for whether they require the

object to be open.

Syntax

.Net
C# void Open()

C++ void Open()

VB Sub Open

ObjC
- (void) open

Remarks

Once open, the ICamera object remains open until explicitly closed by calling Close, or the

device is no longer connected and there are no remaining references to the ICamera object.

The application should avoid leaving an ICamera object open, once it no longer needs it

open.

3.6.3 Close

Close closes the ICamera object, disconnecting from the attached device, and releasing all

resources. Close is called after a prior call to Open, when the application no longer needs to

reserve the device associated with the ICamera object.

Close can be called on an already closed device, though this does nothing.

Syntax

.Net
C# void Close()

C++ void Close()

VB Sub Close

ObjC
- (void) close

Remarks

Close automatically calls StopCapture with bWaitOnPending set to false, which may discard

any pending images not yet transferred from the device. If the application wishes to transfer

any pending images, it should call StopCapture with bWaitOnPending set to true, prior to

calling Close. Images already transferred to the ICamera object are not discarded by calling

Close.

3.6.4 IsOpen

IsOpen returns true if the ICamera object is open, that is if a previous call to Open has

succeeded, and Close has not yet been called.

Syntax

.Net
C# bool IsOpen()

C++ bool IsOpen()

VB Function IsOpen As Boolean

 31

ObjC
- (BOOL) isOpen

Return Value

True if the ICamera object is currently in an open state, otherwise false.

3.6.5 IsConnected

IsConnected returns true if the device associated with the ICamera object is currently

connected to the host computer.

Syntax

.Net
C# bool IsConnected()

C++ bool IsConnected()

VB Functions IsConnected As Boolean

ObjC
- (BOOL) isConnected

Return Value

True if the device associated with the ICamera object is currently connected to the host

computer.

Remarks

The return value of IsConnected can change in response to external events. So multiple calls

to IsConnected in a row could return different values. When the device is disconnected, a

kCameraEvent_CameraDisconnected event is sent.

Once a device is disconnected, that is IsConnected returns false, the state of the ICamera

object will not return to connected. If the device that was formerly connected is reconnected,

a new ICamera object is created instead.

An ICamera object remains open, even if the device is no longer connected. An application

must still explicitly call Close, when it no longer wishes to communicate with the device.

Usually, an application calls Close immediately in response to an open device being

disconnected.

IsAvailable will also return false, once IsConnected returns false.

3.6.6 StartCapture

StartCapture enables the device to capture images, and starts the transfer of captured images

from the device to the host computer. StartCapture can also be called following a call to

PauseCapture to restart the capture and transfer of images.

The ICamera object must be in an open state (that is a successful call to Open has been made)

before calling StartCapture. StartCapture can be called on a device that is already capturing,

though this does nothing, unless capturing is paused.

StartCapture allocates any resources that are necessary for the capture and transfer of images,

such as internal image buffers. These resources may be significant and are usually released

when StopCapture is called, but may also only be released when Close is called.

 32

Syntax

.Net
C# void StartCapture()

C++ void StartCapture()

VB Sub StartCapture

ObjC
- (void) startCapture

Remarks

When the capturing state changes to started, a kCameraEvent_CapturingStarted event is sent.

This method is only supported if the ICamera object has the kCameraCapability_Capture

capability with a value of true.

3.6.7 PauseCapture

If capturing is started, PauseCapture disables the capturing of images and optionally their

transfer, without releasing all resources for capturing. It disables the shutter of the device, and

optionally also disables the transfer of pending images. Call StartCapture again to continue

the capture and transfer of images, or Stop to stop capturing and release all capturing

resources.

The ICamera object must be in a capturing state (that is a successful call to StartCapture has

been made) before calling PauseCapture. PauseCapture can be called when the ICamera

object is already paused. Doing so can change whether image transfer is paused, but the

capture of images will remain disabled.

Syntax

.Net
C# void PauseCapture(bool bPauseTransfer)

C++ void PauseCapture(bool bPauseTransfer)

VB Sub PauseCapture(bPauseTransfer As Boolean)

ObjC
- (void) pauseCapture: (BOOL) pauseTransfer

Parameters

bPauseTransfer If true, both the capture and transfer of images is paused. If

false, only the capture of images is paused, and pending images

continue to transfer.

Remarks

This method is only supported if the ICamera object has the kCameraCapability_Capture

and the kCameraCapability_PauseCapture capabilities with a value of true. In addition, the

bPauseTransfer parameter is only supported if the ICamera object also has the

kCameraCapability_PauseCaptureAndTransfer capability with the value of true.

3.6.8 StopCapture

If capturing is started, StopCapture disables the capturing of images, optionally transfers any

outstanding images, and finally releases all resources related to capturing. StopCapture

disables the shutter of the device and generally releases any resources allocated by

StartCapture, though in some cases some resources may only be released by a call to Close.

 33

The ICamera object must be in an open state (that is a successful call to Open has been made)

before calling StopCapture. StopCapture can be called on a device that is not capturing,

though this does nothing.

StopCapture can optionally wait on pending images. If the bWaitOnPending parameter is

true, then StopCapture disables capture and blocks until all pending images are transferred.

This can take some time. If bWaitOnPending is false, pending images are generally

discarded.

Syntax

.Net
C# void StopCapture(bool bWaitOnPending)

C++ void StopCapture(bool bWaitOnPending)

VB Sub StopCapture(bWaitOnPending As Boolean)

ObjC
- (void) stopCapture: (BOOL) waitOnPending

Parameters

bWaitOnPending If true, StopCapture blocks until all pending images are

transferred. If false, pending images are generally discarded.

Remarks

The capturing state can also be automatically stopped by an external event, such as an error

or if the device is disconnected. When the capturing state is stopped, a

kCameraEvent_CapturingStopped event is sent.

If bWaitOnPending is true, StopCapture blocks until all pending images are transferred. If

there are any conditions that are hindering the transfer of pending images, then StopCapture

may block for a very long time, until these conditions are no longer present. Generally, the

transfer of images requires room in the image queue as well as memory for the new images.

Thus the application should continue to process pending images as they arrive, even during a

call to StopCapture. If the application stops processing transferred images, for example when

there is insufficient storage capacity, this could also result in StopCapture blocking until the

application begins processing images again.

If StopCapture is blocking while transferring pending images, then most other ICamera

methods, such as Open, Close, StartCapture, and so on, will also block until StopCapture is

complete.

This method is only supported if the ICamera object has the kCameraCapability_Capture

capability with a value of true.

3.6.9 IsCapturing

IsCapturing returns true if the ICamera object is ready to capture and transfer images,

following a call to StartCapture. It returns the ICamera object’s current capturing state. Even

if capturing is paused, IsCapturing still returns true.

Syntax

.Net
C# bool IsCapturing()

C++ bool IsCapturing()

VB Function IsCapturing As Boolean

 34

ObjC
- (BOOL) isCapturing

Return Value

True, if the ICamera object’s is ready to capture and transfer images, even if it is paused.

Remarks

The capturing state of an ICamera object can be automatically stopped without an explicit

call to StopCapture, for example in the event of an error or if the device is disconnected.

When the capturing state changes, a kCameraEvent_CapturingStarted or

kCameraEvent_CapturingStopped event is sent.

This method is only supported if the ICamera object has the kCameraCapability_Capture

capability with a value of true.

3.6.10 IsCapturingPaused

IsCapturingPaused returns true if the ICamera object is ready to capture images, but is

currently paused following a call to PauseCapture.

Syntax

.Net
C# bool IsCapturingPaused()

C++ bool IsCapturingPaused()

VB Function IsCapturingPaused As Boolean

ObjC
- (BOOL) isCapturingPaused

Return Value

True, if the ICamera object is ready to capture images, but is currently paused.

Remarks

The capturing state is started but paused, when StartCapture has been called to start

capturing, followed by a PauseCapture call. If capturing is paused, capturing can be restarted

by calling StartCapture, or stopped by calling StopCapture.

This method is only supported if the ICamera object has the kCameraCapability_Capture

capability with a value of true.

3.6.11 PendingImageCount

PendingImageCount returns the number of images in the capture device’s internal buffer or

being transferred to the captured image queue. Images already added to the captured image

queue are not counted as pending.

Syntax

.Net
C# uint PendingImageCount()

C++ System::UInt32 PendingImageCount()

VB Function PendingImageCount As UInteger

ObjC
- (uint32_t) pendingImageCount

 35

Return Value

The number of pending images either in the device or in transfer. If the return value is

0xFFFFFFFF (i.e. –1), then there are pending images but the actual number of images is

unknown.

Remarks

When the pending image count changes, the kCameraEvent_PendingImageCountChange

event is sent.

This method is only supported if the ICamera object has the kCameraCapability_Capture

and kCameraCapability_PendingImageCount capabilities with a value of true.

3.6.12 ShutterRelease

ShutterRelease requests that the capture device capture an image. The device will generally

capture an image if it is possible to do so. However if the device is busy, cannot focus the

lens, or encounters some error, then no image may actually be captured. ShutterRelease does

not block while the image is being captured, it only sends a capture request to the device.

The ICamera object must be in a capturing state and not paused (that is a successful call to

StartCapture must have been made) before calling ShutterRelease.

Syntax

.Net
C# void ShutterRelease()

C++ void ShutterRelease()

VB Sub ShutterRelease

ObjC
- (void) shutterRelease

Remarks

This method is only supported if the ICamera object has the kCameraCapability_Capture

and kCameraCapability_ShutterRelease capabilities with a value of true.

3.6.13 GetNextCaptureImage

GetNextCaptureImage retrieves the next captured image from the captured image queue. The

returned image is removed from the queue.

Syntax

.Net
C# ICaptureImage GetNextCaptureImage()

C++ ICaptureImage^ GetNextCaptureImage()

VB Function GetNextCaptureImage As ICaptureImage

ObjC
- (P1CaptureCore_CaptureImage *) getNextCaptureImage

Return Value

The next ICaptureImage object in the captured image queue. A NULL reference is returned if

there are no more captured images in the queue.

 36

Remarks

Captured images remain in the captured image queue until they are removed by the

application or the ICamera object is destroyed. Calling the ICamera method StopCapture or

Close does not discard any captured images. If images are not removed from the queue, the

amount of memory used can grow significantly. To release memory used by an image, the

ICaptureImage object must both be removed from the queue, and all references to the object

released. Alternatively, the ICaptureImage method Close can be called on an ICaptureImage

object to release the memory used by the image.

This method is equivalent to calling GetCaptureImageQueue and calling the

ICaptureImageList methods First and Remove, while checking all calls for NULL references.

This method is only supported if the ICamera object has the kCameraCapability_Capture

capability with a value of true.

3.6.14 GetCaptureImageQueue

GetCaptureImageQueue returns the captured image queue as an ICaptureImageList object.

The captured image queue contains all successfully captured and transferred images.

Syntax

.Net
C# ICaptureImageList GetCaptureImageQueue()

C++ ICaptureImageList^ GetCaptureImageQueue()

VB Function GetCaptureImageQueue As ICaptureImageList

ObjC
- (P1CaptureCore_CaptureImageList *) getCaptureImageQueue

Return Value

An ICaptureImageList object containing an ICaptureImage object for each captured image. A

NULL reference or an empty list is returned if there are no captured images.

Remarks

The returned ICaptureImageList object is not a copy of an internal queue. Thus the contents

of the ICaptureImageList object can change dynamically as images are added or removed.

Captured images remain in the captured image queue until they are removed by the

application or the ICamera object is destroyed. Calling the ICamera method StopCapture or

Close does not discard any captured images. If images are not removed from the queue, the

amount of memory used can grow significantly. To release memory used by an image, the

ICaptureImage object must both be removed from the queue, and all references to the object

released. Alternatively, the ICaptureImage method Close can be called on an ICaptureImage

object to release the memory used by the image.

This method is only supported if the ICamera object has the kCameraCapability_Capture

capability with a value of true.

3.6.15 MaxCaptureQueueSize (Get/Set)

MaxCaptureQueueSize gets or sets the maximum captured image queue size. This limits the

number of images that will be placed in the captured image queue. Whenever the queue is

full, further transfer of images will be automatically disabled, and re-enabled again once there

is space in the image queue.

 37

Syntax

.Net

C#
uint GetMaxCaptureQueueSize()

void SetMaxCaptureQueueSize(uint max)

C++
System::UInt32 GetMaxCaptureQueueSize()

void SetMaxCaptureQueueSize(System::UInt32 max)

VB
Function GetMaxCaptureQueueSize As UInteger

Sub SetMaxCaptureQueueSize(max As UInteger)

ObjC
- (uint32_t) maxCaptureQueueSize

- (void) setMaxCaptureQueueSize: (uint32_t) max

Parameters

max The maximum number of captured images to store in the

captured image queue. No limit is imposed, if max is set to 0 or

0xFFFFFFFF (i.e. –1).

Return Value

The current maximum captured image queue size. Zero or 0xFFFFFFFF (i.e. –1) is returned

if there is no limit to the image queue.

Remarks

This method is only supported if the ICamera object has the kCameraCapability_Capture

and kCameraCapability_MaxCaptureQueueSize capabilities with a value of true.

3.6.16 RestoreDefault

RestoreDefault restores all properties and settings to their default value for a specified

component of the device. Not all device settings are necessarily represented by properties.

This method, if supported ensures all settings are restored.

Syntax

.Net
C# void RestoreDefault(EnumCameraRestore select)

C++ void RestoreDefault(EnumCameraRestore select)

VB Sub RestoreDefault(select As EnumCameraRestore)

ObjC
- (void) restoreDefault: (EnumCameraRestore) select

Parameters

select The component of the device to restore all settings. See

EnumCameraRestore. The value kCameraRestore_All will

restore all settings on all components.

Remarks

This method is only supported if the ICamera object has the

kCameraCapability_RestoreDefault capability with a value of true.

 38

3.6.17 kCameraEvent_CameraDisconnected

This event is posted by the ICamera object when the device associated with the camera

object has been disconnected.

Arguments

None

3.6.18 kCameraEvent_ImageReceived

This event is posted by the ICamera object when a new ICaptureImage object has been

added to the image queue of the ICamera object.

Arguments

None

3.6.19 kCameraEvent_PendingImageCountChange

This event is posted by the ICamera object when the pending image count has changed.

Arguments

None

3.6.20 kCameraEvent_CapturingStarted

This event is posted by the ICamera object when image capturing has been started, following

a call to StartCapture. Subsequent calls to StartCapture before a call to StopCapture will not

generate another event.

Arguments

None

3.6.21 kCameraEvent_CapturingStopped

This event is posted by the ICamera object when the state of image capturing has changed to

stopped, usually as a result of a call to StopCapture. Capturing may also stop because of an

error.

Arguments

None

 39

3.7 ICaptureImageList (P1CaptureCore_CaptureImageList)

The ICaptureImageList class is a list container for ICaptureImage objects. It is a child object

of ICamera, and inherits from IChildObject and IObjectList.

The ICaptureImageList object returned by the ICamera method GetCaptureImageQueue can

change dynamically in response to method calls or events, such as a new image being

captured. Care should be taken to check for NULL return values when iterating the list, since

it can change dynamically. New images are added instantaneously to the end of the list by a

CaptureCore background thread. ICaptureImageList is still thread-safe like all objects in

CaptureCore, but an application should be aware that the contents of the list can change at

any moment.

Members

GetCaptureImage
Returns the ICaptureImage object corresponding to a specified image

ID.

Inherited from IChildObject

Parent Returns the parent ICamera object of this object.

Inherited from IObjectList

Size Returns the number of ICaptureImage items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first ICaptureImage item in the list.

Last Returns a reference to the last ICaptureImage item in the list.

Next
Returns a reference to the next ICaptureImage item in the list following

a specified ICaptureImage item already in the list.

Previous
Returns a reference to the previous ICaptureImage item in the list

preceding a specified ICaptureImage item already in the list.

Insert
Inserts a new item in front of another specified ICaptureImage item in

the list. Requires insert access rights.

Remove
Removes a specified ICaptureImage item from the list. Requires remove

access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess
Returns the access rights for this list as a bitmask of EnumListAccess

values.

HasAccess Returns true if the list allows the specified access rights.

3.7.1 GetCaptureImage

GetCaptureImage returns an ICaptureImage object corresponding to a specified image ID in

the image list.

Syntax

.Net
C# ICaptureImage GetCaptureImage(uint imageID)

C++ ICaptureImage^ GetCaptureImage(System::UInt32 imageID)

 40

VB Function GetCaptureImage(imageID As UInteger) As ICaptureImage

ObjC
- (P1CaptureCore_CaptureImage *) getCaptureImage: (uint32_t) imageID

Parameters

imageID Numerical ID of the ICaptureImage object to return. The ID

corresponds to the value returned by the ICaptureImage Id

member.

Return Value

The ICaptureImage corresponding to the imageID parameter. If no matching image object is

found, then a NULL reference is returned.

 41

3.8 ICaptureImage (P1CaptureCore_CaptureImage)

The ICaptureImage class represents a captured image file, it contains the image file and

provides methods for copying or saving the image file and accessing its metadata. Captured

images are encapsulated in an image file format, that is specific for the capture device, such

as TIFF or JPG. ICaptureImage methods do not give direct access to the image data, but

provide access to the image file which encapsulates the image.

Even though ICaptureImage represents an image file, the file is generally only stored in

memory. Captured image files can be quite large and thus can use a large amount of memory.

This memory is released when the ICaptureImage object is destroyed (no longer used) or by

calling the Close method. In some development environments, memory is automatically

garbage collected, but the algorithm only releases memory when no more memory is

available. In these environments, it is recommended to always call Close when the

ICaptureImage object is no longer needed, to force the memory to be released immediately.

ICaptureImage objects are created and queued by the ICamera class. When the object is

queued, a kCameraEvent_ImageReceived event is posted by ICamera. ICaptureImage objects

can be retrieved by calling the ICamera method GetNextCaptureImage, or via the

ICaptureImageList object returned from the ICamera method GetCaptureImageQueue.

ICaptureImage is a child object of ICamera, and inherits from IChildObject, ICaptureObject,

IErrorSource, IEventSource. It is a parent to ICapability (ICapabilityList), and IProperty

(IPropertyList) objects.

Members

Close Closes the ICaptureImage object and releases all significant

resources.

FileSize Returns the size of the image file containing the captured image.

SaveToFile Saves the image file to a specified filename path.

SaveToBuffer Saves the image file to a specified memory buffer.

GetImageData Returns an IImageData object giving access to the image data of the

captured image.

GetThumbnail Returns an ICaptureImageThumbnail object representing a thumbnail

image of the captured image.

Inherited from IChildObject

Parent Returns the parent ICamera object of this object.

Inherited from ICaptureObject

Id Returns an unique ID representing the ICaptureImage object.

GetCapabilityList Returns a reference to a ICapabilityList object containing all

ICapability objects for this ICaptureImage object.

GetPropertyList Returns a reference to a IPropertyList object containing all IProperty

objects for this ICaptureImage object.

GetCapability Returns a reference to an ICapability object for this ICaptureImage

object, with a specified ID.

 42

GetProperty Returns a reference to an IProperty object for this ICaptureImage

object, with a specified ID.

Inherited from IErrorSource

GetError Returns the next IErrorObject object, if any, for the ICaptureImage

object.

Inherited from IEventSource

AddReceiver Attaches an IEventReceiver object to receive events (IEventObject)

from the ICaptureImage object.

RemoveReceiver Detaches a previously attached IEventReceiver object so that it no

longer receives events (IEventObject) from the ICaptureImage object.

Events

Inherited from ICaptureObject (EnumCaptureObjectEventId)

kCaptureObjectEvent_CapabilityChange
A capability’s value has changed. The first argument is

the ID of the changed capability.

kCaptureObjectEvent_PropertyChange
A property’s value has changed. The first argument is the

ID of the changed property.

kCaptureObjectEvent_SettingDescriptorChange
A property’s setting descriptor has changed. The first

argument is the ID of the changed property.

kCaptureObjectEvent_PropertyAdded
One or more new properties have been added. The

argument list contains the IDs of the new properties.

kCaptureObjectEvent_PropertyRemoved
One or more properties have been removed. The

argument list contains the IDs of the removed properties.

kCaptureObjectEvent_CapabilityAdded
One or more new capabilities have been added. The

argument list contains the IDs of the new capabilities.

kCaptureObjectEvent_CapabilityRemoved

One or more capabilities have been removed. The

argument list contains the IDs of the removed

capabilities.

Inherited from IErrorSource (EnumGeneralEventId)

kEventId_Error

An error has occurred on a background thread. Indicates

that a new IErrorObject object has been queued by this

object.

Inherited from IEventSource (EnumGeneralEventId)

kEventId_All
Used for subscribing or unsubscribing to all events via

AddReceiver or RemoveReceiver.

3.8.1 Close

Close closes the ICaptureImage object and releases all significant resources. The memory

used by an ICaptureImage object can be quite large since the captured image file is generally

stored in memory. Close can be called when the ICaptureImage object is no longer needed to

immediately release this memory. If Close is not called it will still be released automatically

when the object is destroyed.

Syntax

.Net
C# void Close()

C++ void Close()

VB Sub Close

 43

ObjC
- (void) close

Remarks

Memory used by ICaptureImage is released when the object is destroyed (no longer used) or

by calling Close. In some development environments, memory is automatically garbage

collected, but the algorithm only releases memory when no more memory is available. In

these environments, it is recommended to always call Close when the ICaptureImage object

is no longer needed, to force the memory to be released immediately.

3.8.2 FileSize

FileSize returns the size of the image file containing the captured image.

Syntax

.Net
C# uint FileSize()

C++ System::UInt32 FileSize()

VB Function FileSize As UInteger

ObjC
- (uint32_t) fileSize

Return Value

The size in bytes of the image file represented by the ICaptureImage object.

Remarks

The file size can change when some properties are changed.

3.8.3 SaveToFile

SaveToFile saves the image file to the specified filename path.

Syntax

.Net
C# void SaveToFile(string fileName)

C++ void SaveToFile(System::String^ fileName)

VB Sub SaveToFile(fileName As String)

ObjC
- (void) saveToFile: (NSString *) fileName

Parameters

fileName The filename path of the file to save the image file to.

Remarks

SaveToFile commits any changes to properties to the internal image file before saving the

result to the specified filename.

3.8.4 SaveToBuffer

SaveToBuffer saves the image file to the specified memory buffer.

 44

Syntax

.Net
C# void SaveToBuffer(System.IntPtr pBuffer, uint size)

C++ void SaveToBuffer(System::IntPtr pBuffer, System::UInt32 size)

VB Sub SaveToBuffer(pBuffer As System.IntPtr, size As UInteger)

ObjC
- (void) saveToBuffer: (void *) pBuffer size: (uint32_t) size

Parameters

pBuffer A pointer to the memory buffer to copy the image file to.

size The size of the buffer pointed at by pBuffer in bytes. No more

than size bytes will be copied to the buffer. If size is larger than

the image file size, the extra space will not be touched.

Remarks

SaveToBuffer commits any changes to properties to the internal image file before saving the

result to the specified filename. Changes to properties can change the required file size. After

changing ICaptureImage properties, always call FileSize before calling SaveToBuffer to get

the required file size

3.8.5 GetImageData

GetImageData returns an IImageData object that gives access to the data of the captured

image.

Syntax

.Net
C# IImageData GetImageData()

C++ IImageData^ GetImageData()

VB Function GetImageData As IImageData

ObjC
- (P1CaptureCore_CaptureImageData *) getImageData

Return Value

An IImageData object giving access to the image data of the captured image. A NULL

reference is returned if this method is not supported.

3.8.6 GetThumbnail

GetThumbnail returns an ICaptureImageThumbnail object representing a thumbnail (reduced

resolution) image of the captured image. The width, height and initial color type of the

thumbnail are chosen by ICaptureImage, but preferred values can also be specified by the

caller, which will be used if possible.

Syntax

.Net

C#

ICaptureImageThumbnail GetThumbnail(

 uint preferredWidth, uint preferredHeight,

 EnumColorType preferredColorType)

ICaptureImageThumbnail GetThumbnail()

 45

C++

ICaptureImageThumbnail^ GetThumbnail(

 System::UInt32 preferredWidth, System::UInt32 preferredHeight,

 EnumColorType preferredColorType)

ICaptureImageThumbnail^ GetThumbnail()

VB

Function GetThumbnail(

 preferredWidth As UInteger, preferredHeight As UInteger,

 preferredColorType As EnumColorType) As ICaptureImageThumbnail

Function GetThumbnail As ICaptureImageThumbnail

ObjC
- (P1CaptureCore_CaptureImageThumbnail) getThumbnail

- (P1CaptureCore_CaptureImageThumbnail) getThumbnail:

 (uint32_t) preferredWidth preferredHeight: (uint32_t) preferredHeight

- (P1CaptureCore_CaptureImageThumbnail) getThumbnail:

 (uint32_t) preferredWidth preferredHeight: (uint32_t) preferredHeight

 preferredColorType: (EnumColorType) preferredColorType

Parameters

preferredWidth The preferred width in pixels of the ICaptureImageThumbnail

object to return. ICaptureImage can choose to ignore this

parameter.

 If zero, or when calling the version of GetThumbnail without

parameters, ICaptureImage will use a default width, which is

usually the width of the current embedded thumbnail if any.

preferredHeight The preferred height in pixels of the ICaptureImageThumbnail

object to return. ICaptureImage can choose to ignore this

parameter.

 If zero, or when calling the version of GetThumbnail without

any parameters, ICaptureImage will use a default height, which

is usually the height of the current embedded thumbnail if any.

preferredColorType The preferred color type of the ICaptureImageThumbnail

object to return. ICaptureImage can choose to ignore this

parameter.

 If kColorType_Undefined, or when calling the version of

GetThumbnail without any parameters, ICaptureImage will use

a default color type, which is usually the color type of the

current embedded thumbnail if any.

 Note that the color type can be changed later by calling the

ICaptureImageThumbnail method SetColorType.

Return Value

An ICaptureImageThumbnail object containing a thumbnail image (reduced resolution) of

the captured image. A NULL reference is returned if no thumbnail is available or if one

cannot be generated.

 46

3.9 IImageData (P1CaptureCore_ImageData)

The IImageData class represents the pixel data of an image or thumbnail. It provides methods

for copying the image’s pixels and getting and setting properties such as width, height, color,

and padding. IImageData objects are created and returned by the ICaptureImage methods

GetImageData and GetThumbnail.

Members

ImageType Returns the type of the image.

ColorType (Get/Set) Gets or sets the current color type for the image.

IsColorTypeSupported Returns true if a specified color type is supported by the image.

Width Returns the width of the image in pixels.

Height Returns the height of the image in pixels.

PixelCount Returns the number of pixels in the image. Equivalent to Width ×

Height.

Orientation Returns the orientation of the image.

ImageSize Returns the total size in bytes of the image, with or without

padding.

LineSize Returns the size in bytes of a line in the image, with or without

padding.

PixelSize Returns the size of a pixel in the image, with or without padding.

LinePadding

(Get/Set)
Gets or sets the current amount of padding in bytes to append to

each line of the image.

PixelPadding

(Get/Set)
Gets or sets the current amount of padding in bytes to append to

each pixel of the image.

CopyPixels Copies the image pixels to a specified memory buffer, using the

current color type, line padding, and pixel padding.

ToBitmap Returns a copy of the image as a .Net Bitmap object. (.Net only)

toNSImage Returns a copy of the image as an ObjC NSImage object. (ObjC

only)

3.9.1 ImageType

ImageType returns the type of the image.

Syntax

.Net
C# EnumImageType ImageType()

C++ EnumImageType ImageType()

VB Function ImageType As EnumImageType

ObjC
- (EnumColorType) imageType

 47

Return Value

An EnumImageType indicating the type of the image.

3.9.2 ColorType (Get/Set)

ColorType gets or sets the current color type for the image. The image’s color type is used by

CopyPixels when copying the image, and other methods, such as PixelSize, when reporting

the size of the image. The color type can often be changed after the image’s creation.

Supported color types can be determined by using IsColorTypeSupported.

Syntax

.Net

C#
EnumColorType GetColorType()

bool SetColorType(EnumColorType colorType)

C++
EnumColorType GetColorType()

bool SetColorType(EnumColorType colorType)

VB
Function GetColorType As EnumColorType

Function SetColorType(colorType As EnumColorType) As Boolean

ObjC
- (EnumColorType) colorType

- (void) setColorType: (EnumColorType) colorType

Parameters

colorType The new color type (EnumColorType) for the image.

Return Value

GetColorType returns the current color type for the image. SetColorType returns true if the

colorType parameter is supported by the image, otherwise it returns false and does not change

the color type.

Remarks

Generally, a image’s color type can only be changed to a compatible color type to the original

color type, such as from RGB to BGR or from RGB to RGBA. Additionally, the internal

representation of the image is usually not altered when setting the color type. The image

simply remembers which color type is desired, and returns that color type when calling

CopyPixels, or uses that color types pixel size when calculating sizes.

3.9.3 IsColorTypeSupported

IsColorTypeSupported returns true if the specified color type is supported by the image.

Syntax

.Net
C# bool IsColorTypeSupported(EnumColorType colorType)

C++ bool IsColorTypeSupported(EnumColorType colorType)

VB Function IsColorTypeSupported(colorType As EnumColorType) As Boolean

ObjC
- (BOOL) isColorTypeSupported: (EnumColorType) colorType

Parameters

colorType The color type (EnumColorType) to test support for.

 48

Return Value

Returns true if the specified color type is supported by the image, otherwise it returns false.

3.9.4 Width

Width returns the width of the image in pixels.

Syntax

.Net
C# uint Width { get; }

C++
property System::UInt32 Width

 { System::UInt32 get(); }

VB ReadOnly Property Width As UInteger

ObjC
- (uint32_t) width

Return Value

The width of the image in pixels.

Remarks

The width cannot be changed after the image’s creation.

3.9.5 Height

Height returns the height of the image in pixels.

Syntax

.Net
C# uint Height { get; }

C++
property System::UInt32 Height

 { System::UInt32 get(); }

VB ReadOnly Property Height As UInteger

ObjC
- (uint32_t) height

Return Value

The height of the image in pixels.

Remarks

The height cannot be changed after the image’s creation.

3.9.6 PixelCount

PixelCount returns the number of pixels in the image.

Syntax

.Net
C# uint PixelCount { get; }

C++
property System::UInt32 PixelCount

 { System::UInt32 get(); }

VB ReadOnly Property PixelCount As UInteger

 49

ObjC
- (uint32_t) pixelCount

Return Value

The number of pixels in the image. Equivalent to Width × Height.

3.9.7 Orientation

Orientation returns the orientation of the image.

Syntax

.Net
C# EnumImageOrientation Orientation()

C++ EnumImageOrientation Orientation()

VB Function Orientation As EnumImageOrientation

ObjC
- (EnumImageOrientation) orientation

Return Value

An EnumImageOrientation indicating the orientation of the image. Image orientation is the

orientation of the device when the image was captured.

Remarks

To display the image in the correct orientation the image should be rotated by the amount

indicated by the EnumImageOrientation value.

3.9.8 ImageSize

ImageSize returns the total size in bytes of the image, with or without padding.

Syntax

.Net
C# uint ImageSize(bool bIncludePadding)

C++ System::UInt32 ImageSize(bool bIncludePadding)

VB Function ImageSize(bIncludePadding As Boolean) As UInteger

ObjC
- (uint32_t) imageSize: (BOOL) bIncludePadding

Parameters

bIncludePadding If true the return value includes both pixel and line padding,

otherwise no padding is included.

Return Value

The total size in bytes of the image. If the bIncludePadding parameter is true, the value

includes both pixel and line padding, otherwise no padding is included. The current color

type (see ColorType) is also used for determining the total size.

3.9.9 LineSize

LineSize returns the size in bytes of a line in the image, with or without padding.

 50

Syntax

.Net
C# uint LineSize(bool bIncludePadding)

C++ System::UInt32 LineSize(bool bIncludePadding)

VB Function LineSize(bIncludePadding As Boolean) As UInteger

ObjC
- (uint32_t) lineSize: (BOOL) bIncludePadding

Parameters

bIncludePadding If true the return value includes both pixel and line padding,

otherwise no padding is included.

Return Value

The size in bytes of a line in the image. If the bIncludePadding parameter is true, the value

includes both pixel and line padding, otherwise no padding is included. The current color

type (see ColorType) is also used for determining the line size.

Remarks

A line contains Width number of pixels, plus pixel padding and line padding.

3.9.10 PixelSize

PixelSize returns the size of a pixel in the image, with or without padding.

Syntax

.Net
C# uint PixelSize(bool bIncludePadding)

C++ System::UInt32 PixelSize(bool bIncludePadding)

VB Function PixelSize(bIncludePadding As Boolean) As UInteger

ObjC
- (uint32_t) pixelSize: (BOOL) bIncludePadding

Parameters

bIncludePadding If true the return value includes pixel padding, otherwise no

padding is included.

Return Value

The size of a pixel in the image. If the bIncludePadding parameter is true, the value includes

pixel padding, otherwise no padding is included. The current color type (see ColorType) is

also used for determining the pixel size.

3.9.11 LinePadding (Get/Set)

LinePadding gets or sets the current amount of padding in bytes to append to each line of the

image.

Syntax

.Net

C#
uint GetLinePadding()

void SetLinePadding(uint padding)

C++ System::UInt32 GetLinePadding()

 51

void SetLinePadding(System::UInt32 padding)

VB
Function GetLinePadding As UInteger

Sub SetLinePadding(padding As UInteger)

ObjC
- (uint32_t) linePadding

- (void) setLinePadding: (uint32_t) padding

Parameters

padding The amount of line padding in bytes to append to the end of

each line in the image.

Return Value

GetLinePadding returns the current line padding in bytes.

3.9.12 PixelPadding (Get/Set)

PixelPadding gets or sets the current amount of padding in bytes to append to each pixel of

the image.

Syntax

.Net

C#
uint GetPixelPadding()

void SetPixelPadding(uint padding)

C++
System::UInt32 GetPixelPadding()

void SetPixelPadding(System::UInt32 padding)

VB
Function GetPixelPadding As UInteger

Sub SetPixelPadding(padding As UInteger)

ObjC
- (uint32_t) pixelPadding

- (void) setPixelPadding: (uint32_t)padding

Parameters

padding The amount of pixel padding in bytes to append to each pixel in

the image.

Return Value

GetPixelPadding returns the current pixel padding in bytes.

3.9.13 CopyPixels

CopyPixels copies the image pixels to the specified memory buffer, using the current color

type, line padding, and pixel padding.

Syntax

.Net
C# void CopyPixels(System.IntPtr pBuffer, uint size)

C++ void CopyPixels(System::IntPtr pBuffer, System::UInt32 size)

VB Sub CopyPixels(pBuffer As System.IntPtr, size As UInteger)

ObjC
- (void) copyPixels: (void *) pBuffer size: (uint32_t) size

 52

Parameters

pBuffer A pointer to the memory buffer to copy the image pixels to.

size The size of the buffer pointed at by pBuffer in bytes. No more

than size bytes will be copied to the buffer. If size is larger than

the image size including padding, the extra space will not be

touched.

Remarks

CopyPixels copies the pixels using the current color type, line padding and pixel padding

settings. Remember to set these to their desired values before calling CopyPixels. The size

parameter should be as large as the value returned by ImageSize including padding, if the

entire image is to be copied.

3.9.14 ToBitmap [.Net Only]

ToBitmap returns a copy of the image as a .Net Bitmap object.

Syntax

.Net
C# System.Drawing.Bitmap ToBitmap()

C++ System::Drawing::Bitmap^ ToBitmap()

VB Function ToBitmap() As System.Drawing.Bitmap

Return Value

A new System.Drawing.Bitmap object with a copy of the image. The System.Drawing.Bitmap

object has the current color type if it is compatible with System.Drawing.Bitmap, otherwise it

is converted to the closest compatible color type.

3.9.15 toNSImage [ObjC Only]

toNSImage returns a copy of the image as an ObjC NSImage object.

Syntax

ObjC
- (NSImage *) toNSImage

Return Value

A new NSImage object with a copy of the image. The NSImage object has the current color

type if it is compatible with NSImage, otherwise it is converted to the closest compatible

color type.

 53

3.10 ICaptureImageThumbnail
(P1CaptureCore_CaptureImageThumbnail)

The ICaptureImageThumbnail class represents a thumbnail/preview image of a captured

image. It contains the thumbnail and provides methods for copying its pixels and getting and

setting properties such as width, height, color, and padding. ICaptureImageThumbnail objects

are created and returned by the ICaptureImage method GetThumbnail.

ICaptureImageThumbnail inherits from IImageData. It currently has no methods of its own.

See the documentation for IImageData for ICaptureImageThumbnail functionality.

Members

Inherited from IImageData

ImageType Returns the type of the image.

ColorType (Get/Set) Gets or sets the current color type for the image.

IsColorTypeSupported Returns true if a specified color type is supported by the image.

Width Returns the width of the image in pixels.

Height Returns the height of the image in pixels.

PixelCount Returns the number of pixels in the image. Equivalent to Width ×

Height.

Orientation Returns the orientation of the image.

ImageSize Returns the total size in bytes of the image, with or without

padding.

LineSize Returns the size in bytes of a line in the image, with or without

padding.

PixelSize Returns the size of a pixel in the image, with or without padding.

LinePadding

(Get/Set)
Gets or sets the current amount of padding in bytes to append to

each line of the image.

PixelPadding

(Get/Set)
Gets or sets the current amount of padding in bytes to append to

each pixel of the image.

CopyPixels Copies the image pixels to a specified memory buffer, using the

current color type, line padding, and pixel padding.

ToBitmap Returns a copy of the image as a .Net Bitmap object. (.Net only)

toNSImage Returns a copy of the image as an ObjC NSImage object. (ObjC

only)

 54

3.11 ICaptureObject (P1CaptureCore_CaptureObject)

The ICaptureObject base class provides a common set of functionality that is shared between

the main capture objects of CaptureCore: ICaptureProvider, ICamera and ICaptureImage. It

does not exist as an object on its own, and is only accessible via a derived class.

ICaptureObject inherits from IErrorSource and IEventSource. It is a parent to ICapability

(ICapabilityList) and IProperty (IPropertyList) objects.

Members

Id Returns an unique ID representing the ICaptureObject instance.

GetCapabilityList Returns a reference to a ICapabilityList object containing all

ICapability objects for this ICaptureObject object.

GetPropertyList Returns a reference to a IPropertyList object containing all IProperty

objects for this ICaptureObject object.

GetCapability Returns a reference to an ICapability object for this ICaptureObject

object, with a specified ID.

GetProperty Returns a reference to an IProperty object for this ICaptureObject

object, with a specified ID.

Inherited from IErrorSource

GetError Returns the next IErrorObject object, if any, for the ICaptureObject

object.

Inherited from IEventSource

AddReceiver Attaches an IEventReceiver object to receive events (IEventObject)

from the ICaptureObject object.

RemoveReceiver Detaches a previously attached IEventReceiver object so that it no

longer receives events (IEventObject) from the ICaptureObject

object.

Events

General (EnumCaptureObjectEventId)

kCaptureObjectEvent_CapabilityChange
A capability’s value has changed. The first

argument is the ID of the changed capability.

kCaptureObjectEvent_PropertyChange
A property’s value has changed. The first

argument is the ID of the changed property.

kCaptureObjectEvent_SettingDescriptorChange
A property’s setting descriptor has changed. The

first argument is the ID of the changed property.

kCaptureObjectEvent_PropertyAdded

One or more new properties have been added. The

argument list contains the IDs of the new

properties.

kCaptureObjectEvent_PropertyRemoved

One or more properties have been removed. The

argument list contains the IDs of the removed

properties.

kCaptureObjectEvent_CapabilityAdded

One or more new capabilities have been added.

The argument list contains the IDs of the new

capabilities.

 55

kCaptureObjectEvent_CapabilityRemoved

One or more capabilities have been removed. The

argument list contains the IDs of the removed

capabilities.

3.11.1 Id

Id returns an unique ID representing the ICaptureObject instance.

Syntax

.Net
C# uint Id { get; }

C++
property System::UInt32 Id

 { System::UInt32 get(); }

VB ReadOnly Property Id As UInteger

ObjC
- (uint32_t) id

Return Value

A number that uniquely identifies the ICaptureObject instance.

Remarks

No two instances of ICaptureObject classes will have the same ID and it doesn’t change after

the object is created.

3.11.2 GetCapabilityList

GetCapabilityList returns a reference to a ICapabilityList object containing all ICapability

objects for this ICaptureObject object.

Syntax

.Net
C# ICapabilityList GetCapabilityList()

C++ ICapabilityList^ GetCapabilityList()

VB Function GetCapabilityList As ICapabilityList

ObjC
- (P1CaptureCore_CapabilityList *) getCapabilityList

Return Value

An ICapabilityList object containing all the ICapability objects for the object. A NULL

reference or an empty list is returned if there are no defined capabilities for the object.

Remarks

The returned ICapabilityList will be a copy of an internal capability list, if the number of

capabilities of the ICaptureObject object can change dynamically. This allows the returned

list to be used without any problems that may arise from dynamic changes – only the internal

list is changed dynamically. However, this is very unusual and generally the capability list

will be the same on each call to GetCapabilityList. Nevertheless, applications should avoid

caching the returned ICapabilityList object, and retrieve a new list when it is needed.

 56

3.11.3 GetPropertyList

GetPropertyList returns a reference to a IPropertyList object containing all IProperty objects

for this ICaptureObject object.

Syntax

.Net
C# IPropertyList GetPropertyList()

C++ IPropertyList^ GetPropertyList()

VB Function GetPropertyList As IPropertyList

ObjC
- (P1CaptureCore_PropertyList *) getPropertyList

Return Value

An IPropertyList object containing all the IProperty objects for the object. A NULL

reference or an empty list is returned if there are no defined properties for the object.

Remarks

The returned IPropertyList will be a copy of an internal property list, if the number of

properties of the ICaptureObject object can change dynamically. This allows the returned list

to be used without any problems that may arise from dynamic changes – only the internal list

is changed dynamically. Applications should avoid caching the returned IPropertyList object,

and retrieve a new list when it is needed.

3.11.4 GetCapability

GetCapability returns a reference to an ICapability object for this ICaptureObject object,

with a specified ID.

Syntax

.Net
C# ICapability GetCapability(uint capabilityID)

C++ ICapability^ GetCapability(System::UInt32 capabilityID)

VB Function GetCapability(capabilityID As UInteger) As ICapability

ObjC
- (P1CaptureCore_Capability *) getCapability: (uint32_t) capabilityID

Parameters

capabilityID The capability ID of the ICapability object to return. Capability

IDs are specific for each class derived from ICaptureObject.

See Capability Reference for possible capability IDs.

Return Value

An ICapability object with the specified capability ID, if it is present in the capability list for

the object. If the specified capability is not present, then a NULL reference is returned.

Remarks

GetCapability is equivalent to calling GetCapabilityList, and calling the ICapabilityList

method GetCapabiltity, which iterates through the capability list searching for the specified

capability ID.

 57

3.11.5 GetProperty

GetProperty returns a reference to an IProperty object for this ICaptureObject object, with a

specified ID.

Syntax

.Net
C# IProperty GetProperty(uint propertyID)

C++ IProperty^ GetProperty(System::UInt32 propertyID)

VB Function GetProperty(propertyID As UInteger) As IProperty

ObjC
- (P1CaptureCore_Property *) getProperty: (uint32_t) propertyID

Parameters

propertyID The property ID of the IProperty object to return. Property IDs

are specific for each class derived from ICaptureObject. See

Property Reference for possible property IDs.

Return Value

An IProperty object with the specified property ID, if it is present in the property list for the

object. If the specified property is not present, then a NULL reference is returned.

Remarks

GetProperty is equivalent to calling GetPropertyList, and calling the IPropertyList method

GetProperty, which iterates through the property list searching for the specified property ID.

3.11.6 kCaptureObjectEvent_CapabilityChange

This event is posted by the ICaptureObject object when an ICapability object, owned by the

ICaptureObject object, has changed in some way.

Arguments

0 The capability ID of the ICapability object that has changed.

3.11.7 kCaptureObjectEvent_PropertyChange

This event is posted by the ICaptureObject object when an IProperty object, owned by the

ICaptureObject object, has changed in some way.

Arguments

0 The property ID of the IProperty object has changed.

3.11.8 kCaptureObjectEvent_SettingDescriptorChange

This event is posted by the ICaptureObject object when the ISettingDescriptor object of an

IProperty object, owned by the ICaptureObject, has changed in some way.

Arguments

0 The property ID of the IProperty object that owns the ISettingDescriptor that

has changed.

 58

3.11.9 kCaptureObjectEvent_PropertyAdded

This event is posted by the ICaptureObject object when one or more properties have been

added to the property list.

Arguments

0 to NumberOfArguments-1 The property IDs of the new IProperty objects.

3.11.10 kCaptureObjectEvent_PropertyRemoved

This event is posted by the ICaptureObject object when one or more properties have been

removed from the property list.

Arguments

0 to NumberOfArguments-1 The property IDs of the removed IProperty objects.

3.11.11 kCaptureObjectEvent_CapabilityAdded

This event is posted by the ICaptureObject object when one or more capabilities have been

added to the capability list.

Arguments

0 to NumberOfArguments-1 The property IDs of the new ICapability objects.

3.11.12 kCaptureObjectEvent_CapabilityRemoved

This event is posted by the ICaptureObject object when one or more capabilities have been

removed from the capability list.

Arguments

0 to NumberOfArguments-1 The property IDs of the removed ICapability objects.

 59

3.12 ICapabilityList (P1CaptureCore_CapabilityList)

The ICapabilityList class is a list container for ICapability objects. It is a child object of

ICaptureObject, and inherits from IChildObject and IObjectList.

Members

GetCapability Returns a reference to an ICapability object in the list with the specified

ID.

Dump Dumps debug information for all capabilities in the list to a debug monitor

or to a log file specified through the ICaptureCore object.

Inherited from IChildObject

Parent Returns the parent ICaptureObject object of this object.

Inherited from IObjectList

Size Returns the number of ICapability items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first ICapability item in the list.

Last Returns a reference to the last ICapability item in the list.

Next Returns a reference to the next ICapability item in the list following a

specified ICapability item already in the list.

Previous Returns a reference to the previous ICapability item in the list preceding a

specified ICapability item already in the list.

Insert Inserts a new item in front of another specified ICapability item in the list.

Requires insert access rights.

Remove Removes a specified ICapability item from the list. Requires remove

access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess Returns the access rights for this list as a bitmask of EnumListAccess

values.

HasAccess Returns true if the list allows the specified access rights.

3.12.1 GetCapability

GetCapability returns a reference to an ICapability object in the list with the specified ID.

Syntax

.Net
C# ICapability GetCapability(uint capabilityID)

C++ ICapability^ GetCapability(System::UInt32 capabilityID)

VB Function GetCapability(capabilityID As UInteger) As ICapability

ObjC
- (P1CaptureCore_Capability *) getCapability: (uint32_t) capabilityID

Parameters

capabilityID The capability ID of the ICapability object to return.

 60

Return Value

An ICapability object with the specified capability ID, if it is present in the capability list. If

the specified capability is not present, then a NULL reference is returned.

3.12.2 Dump

Dump dumps debug information for all capabilities in the list to a debug monitor and to a log

file specified through the ICaptureCore object.

Syntax

.Net
C# void Dump()

C++ void Dump()

VB Sub Dump

ObjC
- (void) dump

Remarks

Dump calls the ICapability method Dump on each ICapability object in the list. This outputs

a textual description of each capability in the list to the platform’s debug monitor, and to a

log file, if one has been setup via the LogMsgFileName method of ICaptureCore.

 61

3.13 ICapability (P1CaptureCore_Capability)

Objects of the ICapability class each represent a single capability of their parent

ICaptureObject. A capability is a read-only value that tells something about what an instance

of an ICaptureObject is capable of doing. Most capabilities are Boolean values, but they may

also be numbers, strings and other value types. Each capability has an unique ID; see the

Capability Reference section for possible capabilities for each ICaptureObject derived class.

Capabilities are different than properties (see IProperty). Capabilities tell what an object can

do, whereas properties provide settings and information about the object. Capabilities are

normally used for determining if certain methods can be called, or enabling/disabling some

functionality. They are generally only used to control the logic of an application, and are not

directly presented to a user. Properties are often settings or information about an object, and

are often presented to a user, in addition to possibly controlling the logic of an application.

Capabilities can change dynamically in response to method calls or events. A capability

change event (kCaptureObjectEvent_CapabilityChange) is posted by the parent

ICaptureObject whenever a capability changes.

ICapability is a child object of ICaptureObject, and inherits from IChildObject and

IValueRead.

Members

Id Returns the unique capability ID for this capability.

Name Returns a string name for the capability.

Unit Returns a string containing an optional unit for the capability.

Dump Dumps debug information for the capability to a debug monitor and

to a log file specified through the ICaptureCore object.

Inherited from IChildObject

Parent Returns the parent ICaptureObject object of this object.

Inherited from IValueRead

ValueType Returns the value type (Boolean, integer, string, etc) of the object.

IsUndefined Returns true if the object’s value is undefined.

GetValue Gets the value of the object if the type of the object and the type

passed to GetValue are compatible. One can always get a string

representation for all value types. GetValue is available on platforms

that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed

integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit unsigned

integer (or enumeration).

GetValueInt64 Returns the value of the object if its value type is a 64-bit signed

integer.

 62

GetValueUInt64 Returns the value of the object if its value type is a 64-bit unsigned

integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit floating

point.

GetValueString Returns the value of the object if its value type is a string, or a string

representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration

(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit

signed integer).

GetValuePointFloat Returns the value of the object if its value type is a point (64-bit

floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit

signed integer).

GetValueAreaFloat Returns the value of the object if its value type is an area (64-bit

floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit

signed integer).

GetValueRectFloat Returns the value of the object if its value type is a rectangle (64-bit

floating point).

Compare Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less

than, greater than or equal to the other object.

3.13.1 Id

Id returns the unique capability ID for this ICapability object.

Syntax

.Net
C# uint Id { get; }

C++
property System::UInt32 Id

 { System::UInt32 get(); }

VB ReadOnly Property Id As UInteger

ObjC
- (uint32_t) id

Return Value

A number representing the unique capability ID of the object. See Capability Reference for

further details about capability IDs for different classes.

Remarks

The capability ID for an ICapability object doesn’t change after the object is created.

 63

3.13.2 Name

Name returns a display name string for the capability. The default name is vendor specific,

but alternative names can also be returned.

Syntax

.Net

C#
string Name { get; }

string NameEx(EnumCaptureCoreName which)

C++

property System::String^ Name

 { System::String^ get(); }

System::String^ NameEx(EnumCaptureCoreName which)

VB
ReadOnly Property Name As String

Function NameEx(EnumCaptureCoreName which) As String

ObjC
- (NSString *) name

- (NSString *) name: (EnumCaptureCoreName) which

Parameters

which An EnumCaptureCoreName value specifying which name to

return. If the which parameter is not specified, the returned

name is vendor specific (CaptureCoreName_VendorSpecific).

Return Value

A string containing a display name for the capability. The specific name returned is specified

by the optional parameter which. The default name is vendor specific.

Remarks

[.Net only] The method that takes the parameter which is called NameEx, to avoid conflicting

with the Name property.

There are several possible names for a capability: vendor specific, long or short. Vendor

specific names are defined by the manufacturer associated with the object. Long and short

names are defined by Phase One and are generally common for all objects. Short names are

guaranteed to be 20 characters or less. The names for each name type may be the same.

The names for an ICapability object do not change after the object is created.

3.13.3 Unit

Unit returns a string containing an optional unit for the capability.

Syntax

.Net
C# string Unit { get; }

C++
property System::String^ Unit

 { System::String^ get(); }

VB ReadOnly Property Unit As String

ObjC
- (NSString *) unit

 64

Return Value

A string containing an optional display unit for the capability, such as degrees, Celsius,

pixels, and so on. The string can be empty if no unit is defined.

Remarks

The unit for an ICapability object doesn’t change after the object is created.

3.13.4 Dump

Dump dumps debug information for the capability to a debug monitor and to a log file

specified through the ICaptureCore object.

Syntax

.Net
C# void Dump()

C++ void Dump()

VB Sub Dump

ObjC
- (void) dump

Remarks

Dump outputs a text message describing the Name and value of the ICapability object. The

message is output to the platform’s debug monitor, and written to a log file, if one has been

setup via the LogMsgFileName method of ICaptureCore.

 65

3.14 IPropertyList (P1CaptureCore_PropertyList)

The IPropertyList class is a list container for IProperty objects. It is a child object of

ICaptureObject, and inherits from IChildObject and IObjectList.

Members

GetProperty Returns a reference to an IProperty object in the list with the specified

ID.

RestoreDefault Resets all properties in the list to their default value, if they have a default

value.

Refresh Reloads all property values from their data source. Refresh is not

necessary for retrieving a property’s value. This method can affect

performance, so it should only be called when a user specifically requests

a refresh or manual synchronization.

Dump Dumps debug information for all properties in the list to a debug monitor

or to a log file specified through the ICaptureCore object.

Inherited from IChildObject

Parent Returns the parent ICaptureObject object of this object.

Inherited from IObjectList

Size Returns the number of IProperty items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first IProperty item in the list.

Last Returns a reference to the last IProperty item in the list.

Next Returns a reference to the next IProperty item in the list following a

specified IProperty item already in the list.

Previous Returns a reference to the previous IProperty item in the list preceding a

specified IProperty item already in the list.

Insert Inserts a new item in front of another specified IProperty item in the list.

Requires insert access rights.

Remove Removes a specified IProperty item from the list. Requires remove

access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess Returns the access rights for this list as a bitmask of EnumListAccess

values.

HasAccess Returns true if the list allows the specified access rights.

3.14.1 GetProperty

GetProperty returns a reference to an IProperty object in the list with the specified ID.

Syntax

.Net
C# IProperty GetProperty(uint propertyID)

 66

C++ IProperty^ GetProperty(System::UInt32 propertyID)

VB Function GetProperty(propertyID As UInteger) As IProperty

ObjC
- (P1CaptureCore_Property *) getProperty: (uint32_t) propertyID

Parameters

propertyID The property ID of the IProperty object to return.

Return Value

An IProperty object with the specified property ID, if it is present in the property list. If the

specified property is not present, then a NULL reference is returned.

3.14.2 RestoreDefault

RestoreDefault resets all properties in the list to their default value, if they have a default

value.

Syntax

.Net
C# void RestoreDefault()

C++ void RestoreDefault()

VB Sub RestoreDefault

ObjC
- (void) restoreDefault

Remarks

RestoreDefault calls the IProperty method RestoreDefault on each IProperty object in the

list.

3.14.3 Refresh

Refresh reloads all property values from their data source. Refresh is not necessary for

retrieving a property’s value. This method can affect performance, so it should only be called

when a user specifically requests a refresh or manual synchronization.

Normally, properties are automatically synchronized with their source. However, this is not

always the case. In the event that properties fall out of synchronization with the source/device

for the property, this method can be used to reload their values from the source/device.

Syntax

.Net
C# void Refresh()

C++ void Refresh()

VB Sub Refresh

ObjC
- (void) refresh

Remarks

Refresh calls the IProperty method Refresh on each IProperty object in the list.

 67

A call to Refresh may take some time, and is only necessary if property objects are out of

synchronization with their data source. Since this is unusual, it is recommended to only call

this method, if the user requests synchronization manually.

3.14.4 Dump

Dump dumps debug information for all properties in the list to a debug monitor or to a log

file specified through the ICaptureCore object.

Syntax

.Net
C# void Dump()

C++ void Dump()

VB Sub Dump

ObjC
- (void) dump

Remarks

Dump calls the IProperty method Dump on each IProperty object in the list. This outputs a

textual description of each property in the list to the platform’s debug monitor, and to a log

file, if one has been setup via the LogMsgFileName method of ICaptureCore.

 68

3.15 IProperty (P1CaptureCore_Property)

Objects of the IProperty class each represent a single property of their parent ICaptureObject.

A property represents a setting or some other information about an instance of an

ICaptureObject, and may be a number, string, Boolean, or other value type. Each property

has an unique ID; see the Property Reference section for possible properties for each

ICaptureObject derived class.

Properties are different than capabilities (see ICapability). Capabilities tell what an object can

do, whereas properties provide settings and information about the object, and are often

presented to a user, in addition to possibly controlling the logic of an application.

Properties can be read-only or writeable. In addition, they may have an optional setting

descriptor (see ISettingDescriptor) describing the valid range or values of the property.

Properties can change dynamically in response to method calls or events. Not only can their

value change, but also their setting descriptor, and whether they are read-only or writeable. A

property or setting descriptor change event (kCaptureObjectEvent_PropertyChange or

kCaptureObjectEvent_SettingDescriptorChange) is posted by the parent ICaptureObject

whenever the property or setting descriptor for a property changes.

IProperty is a child object of ICaptureObject, and inherits from IChildObject, IValueRead

and IValueWrite. It is a parent to ISettingDescriptor and ISettingValue (ISettingValueList)

objects.

Members

Id Returns the unique property ID for this property.

Name Returns a string name for the property.

Unit Returns a string containing an optional unit for the property.

GetSetttingDescriptor Returns an optional ISettingDescriptor object describing the

values and/or range that the property can be set to.

IsDisabled Returns true if the property is currently disabled, that is that its

value cannot be written to or read from.

IsDefaultValue Returns true if the property’s current value is the same as its

default value. It always returns false if it does not have a default

value.

RestoreDefault Sets the property to its default value, if it has one.

Refresh Reloads the property’s value from its data source. Refresh is not

necessary for retrieving the property value. This method can

affect performance, so it should only be called when a user

specifically requests a refresh or manual synchronization.

Dump Dumps debug information for the property to a debug monitor

and to a log file specified through the ICaptureCore object.

Inherited from IChildObject

Parent Returns the parent ICaptureObject object of this object.

Inherited from IValueRead

 69

ValueType Returns the value type (Boolean, integer, string, etc) of the

object.

IsUndefined Returns true if the object’s value is undefined.

GetValue Gets the value of the object if the type of the object and the type

passed to GetValue are compatible. One can always get a string

representation for all value types. GetValue is available on

platforms that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed

integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit

unsigned integer (or enumeration).

GetValueInt64 Returns the value of the object if its value type is a 64-bit signed

integer.

GetValueUInt64 Returns the value of the object if its value type is a 64-bit

unsigned integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit

floating point.

GetValueString Returns the value of the object if its value type is a string, or a

string representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration

(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit

signed integer).

GetValuePointFloat Returns the value of the object if its value type is a point (64-bit

floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit

signed integer).

GetValueAreaFloat Returns the value of the object if its value type is an area (64-bit

floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-

bit signed integer).

GetValueRectFloat Returns the value of the object if its value type is a rectangle (64-

bit floating point).

Compare Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less

than, greater than or equal to the other object.

Inherited from IValueWrite

IsReadOnly Returns true if the object is a read-only object. Set value

methods may not be called on a read-only object.

 70

SetValue Sets the value of the object if the type of the object and the type

passed to SetValue are compatible. SetValue is available on

platforms that support overloading.

SetValueBool Sets the value of the object if its value type is a Boolean.

SetValueInt32 Sets the value of the object if its value type is a 32-bit signed

integer (or enumeration).

SetValueUInt32 Sets the value of the object if its value type is a 32-bit unsigned

integer (or enumeration).

SetValueInt64 Sets the value of the object if its value type is a 64-bit signed

integer.

SetValueUInt64 Sets the value of the object if its value type is a 64-bit unsigned

integer.

SetValueFloat64 Sets the value of the object if its value type is a 64-bit floating

point.

SetValueString Sets the value of the object if its value type is a string.

SetValueEnum Sets the value of the object if its value type is an enumeration

(32-bit signed integer).

SetValuePoint Sets the value of the object if its value type is a point (32-bit

signed integer).

SetValuePointFloat Sets the value of the object if its value type is a point (64-bit

floating point).

SetValueArea Sets the value of the object if its value type is an area (32-bit

signed integer).

SetValueAreaFloat Sets the value of the object if its value type is an area (64-bit

floating point).

SetValueRect Sets the value of the object if its value type is a rectangle (32-bit

signed integer).

SetValueRectFloat Sets the value of the object if its value type is a rectangle (64-bit

floating point).

3.15.1 Id

Id returns the unique property ID for this IProperty object.

Syntax

.Net
C# uint Id { get; }

C++
property System::UInt32 Id

 { System::UInt32 get(); }

VB ReadOnly Property Id As UInteger

ObjC
- (uint32_t) id

 71

Return Value

A number representing the unique property ID for this object. See Property Reference for

further details about property IDs for different classes.

Remarks

The property ID for an IProperty object doesn’t change after the object is created.

3.15.2 Name

Name returns a display name string for the property. The default name is vendor specific, but

alternative names can also be returned.

Syntax

.Net

C#
string Name { get; }

string NameEx(EnumCaptureCoreName which)

C++

property System::String^ Name

 { System::String^ get(); }

System::String^ NameEx(EnumCaptureCoreName which)

VB
ReadOnly Property Name As String

Function NameEx(EnumCaptureCoreName which) As String

ObjC
- (NSString *) name

- (NSString *) name: (EnumCaptureCoreName) which

Parameters

which An EnumCaptureCoreName value specifying which name to

return. If the which parameter is not specified, the returned

name is vendor specific (CaptureCoreName_VendorSpecific).

Return Value

A string containing a display name for the property. The specific name returned is specified

by the optional parameter which. The default name is vendor specific.

Remarks

[.Net only] The method that takes the parameter which is called NameEx, to avoid conflicting

with the Name property.

There are several possible names for a property: vendor specific, long or short. Vendor

specific names are defined by the manufacturer associated with the object. Long and short

names are defined by Phase One and are generally common for all objects. Short names are

guaranteed to be 20 characters or less. The names for each name type may be the same.

The names for an IProperty object do not change after the object is created.

3.15.3 Unit

Unit returns a string containing an optional unit for the property.

Syntax

.Net
C# string Unit { get; }

 72

C++
property System::String^ Unit

 { System::String^ get(); }

VB ReadOnly Property Unit As String

ObjC
- (NSString *) unit

Return Value

A string containing an optional display unit for the property, such as degrees, Celsius, pixels,

and so on. The string can be empty if no unit is defined.

Remarks

The unit for an IProperty object doesn’t change after the object is created.

3.15.4 GetSettingDescriptor

GetSettingDescriptor returns an optional ISettingDescriptor object describing the values

and/or range that the property can be set to.

Syntax

.Net
C# ISettingDescriptor GetSettingDescriptor()

C++ ISettingDescriptor^ GetSettingDescriptor()

VB Function GetSettingDescriptor As ISettingDescriptor

ObjC
- (P1CaptureCore_SettingDescriptor *) getSettingDescriptor

Return Value

A reference to a ISettingDescriptor object for the IProperty object. A NULL reference is

returned if no setting descriptor is defined for the IProperty object.

Remarks

If GetSettingDescriptor returns a NULL reference, then no setting descriptor is defined for

the property. If the property is not read-only, this means that it can be set to any legal value

for the value type of the property.

3.15.5 IsDisabled

IsDisabled returns true if the property is currently disabled, that is that its value cannot be

written to or read from.

Properties can become disabled if the current state of the parent object does not allow the

property to be set (or read). A property’s disabled state can change at any moment. If it does

change a kCaptureObjectEvent_PropertyChange event is sent by the parent object.

Syntax

.Net
C# bool IsDisabled()

C++ bool IsDisabled()

VB Function IsDisabled As Boolean

ObjC
- (BOOL) isDisabled

 73

Return Value

True if the property is currently not accessible or not available. The return value can change

instantaneously or depend upon the values of other properties.

Remarks

A disabled property is automatically read-only (IsReadOnly will return true). However,

unlike a read-only property, a disabled property can’t generally be read from, and may even

throw an exception if its value is read.

3.15.6 IsDefaultValue

IsDefaultValue returns true if the property’s current value is the same as its default value. It

always returns false if it does not have a default value. A property’s default value is defined

in its setting descriptor.

Syntax

.Net
C# bool IsDefaultValue()

C++ bool IsDefaultValue()

VB Function IsDefaultValue As Boolean

ObjC
- (BOOL) isDefaultValue

Return Value

True if there is a default value and the property value is the same as the default.

3.15.7 RestoreDefault

RestoreDefault sets the property to its default value, if it has a one. A property’s default value

is defined in its setting descriptor.

Syntax

.Net
C# void RestoreDefault()

C++ void RestoreDefault()

VB Sub RestoreDefault

ObjC
- (void) restoreDefault

Remarks

RestoreDefault tests if there is an ISettingDescriptor for the property, and retrieves the

default value by calling the ISettingDescriptor method Default. If there is not

ISettingDescriptor or the descriptor does not have a default, then RestoreDefault does

nothing.

3.15.8 Refresh

Refresh reloads the property’s value from its data source. Refresh is not necessary for

retrieving the property value. This method can affect performance, so it should only be called

when a user specifically requests a refresh or manual synchronization.

 74

Normally, properties are automatically synchronized with their source. However, this is not

always the case. In the event that a property falls out of synchronization with the

source/device for the property, this method can be used to reload its value from the

source/device.

Syntax

.Net
C# void Refresh()

C++ void Refresh()

VB Sub Refresh

ObjC
- (void) refresh

Remarks

A call to Refresh may take some time, and is only necessary if the property object is out of

synchronization with its data source. Since this is unusual, it is recommended to only call this

method, if the user requests synchronization manually.

3.15.9 Dump

Dump dumps debug information for the property to a debug monitor and to a log file

specified through the ICaptureCore object.

Syntax

.Net
C# void Dump()

C++ void Dump()

VB Sub Dump

ObjC
- (void) dump

Remarks

Dump outputs a text message describing the Name and value of the IProperty object. The

message is output to the platform’s debug monitor, and written to a log file, if one has been

setup via the LogMsgFileName method of ICaptureCore.

 75

3.16 ISettingDescriptor (P1CaptureCore_SettingDescriptor)

The ISettingDescriptor class provides optional information about the possible values that a

specific IProperty object can be set to. It can describe an IProperty object’s valid range

and/or provide a list of values, as well as describing a default value.

ISettingDescriptor objects are read-only objects, however their values can change

dynamically, in response to method calls or events. A setting descriptor change event

(kCaptureObjectEvent_SettingDescriptorChange) is sent by the ICaptureObject object that

is indirectly the parent of the ISettingDescriptor object, whenever the setting descriptor

changes.

An application can use the methods of ISettingDescriptor to determine which UI control

could be appropriate for controlling the value of an IProperty object. If there is no

ISettingDescriptor object for an IProperty object, or the ISettingDescriptor object does not

have a value list (see HasValueList and GetValueList), then an edit control is usually

appropriate to display and edit a property’s value. If the ISettingDescriptor object does have a

value list, then there are generally two options. If the IsValueListSelectOnly method returns

true, indicating that only values from the value list may be selected, then a drop-down list

control is useful. If IsValueListSelectOnly returns false, a combination edit/drop-down list

control will allow a user to both select values and edit values.

IProperty objects can also have a default value and a range limit. If there is no range limit,

then all values are considered in the range. An application can test if a value is valid for a

specific IProperty object by calling the method ValidateValue, which throws an error if the

value is not a valid setting for the IProperty object. Note that an IProperty object calls

ValidateValue automatically whenever the application sets it to a new value.

ISettingDescriptor is a child object of IProperty, and inherits from IChildObject. It is a parent

to ISettingValue (ISettingValueList) objects.

Members

ValueType Returns the value type (Boolean, number, string, etc) of the

ISettingDescriptor object. This is always the same as the parent

IProperty object’s value type.

HasDefault Returns true if the parent IProperty object has a default value. If

true, then Default can be used to retrieve the default value.

Default Returns the default value for the parent IProperty object, if it has

one.

HasRange Returns true if the parent IProperty object has a range limit. If

true, then RangeMinimum and RangeMaximum can be used to

retrieve the minimum and maximum range values.

RangeMinimum Returns the minimum range value for the parent IProperty

object, if it has one.

RangeMaximum Returns the maximum range value for the parent IProperty

object, if it has one.

HasValueList Returns true if there is a list of values that the parent IProperty

object can be set to. If true, then GetValueList can be used to

retrieve the list.

 76

IsValueListSelectOnly Returns true if the parent IProperty object can only be set to

values from the list returned by GetValueList.

GetValueList Returns an optional list of values that the parent IProperty object

can be set to.

ValidateValue Tests whether an IValueRead object has a value that is valid for

the parent IProperty object, and throws an exception if it is not.

A value is valid if it is in range or in the value list, if any.

Inherited from IChildObject

Parent Returns the parent IProperty object of this object.

3.16.1 ValueType

ValueType returns the value type (Boolean, number, string, etc) of the ISettingDescriptor

object. This is always the same as the parent IProperty object’s value type.

Syntax

.Net
C# EnumValueType ValueType { get; }

C++
property EnumValueType^ ValueType

 { EnumValueType^ get(); }

VB ReadOnly Property ValueType As EnumValueType

ObjC
- (EnumValueType) valueType

Return Value

An EnumValueType enumeration value that indicates which value type the ISettingDescriptor

and its parent IProperty object are.

Remarks

All ISettingValue child objects of an ISettingDescriptor object have the same value type as

the ISettingDescriptor object.

The value type of an ISettingDescriptor object doesn’t change after the object is created.

3.16.2 HasDefault

HasDefault returns true if the parent IProperty object has a default value. If true, then Default

can be used to retrieve the default value.

Syntax

.Net
C# bool HasDefault()

C++ bool HasDefault()

VB Function HasDefault As Boolean

ObjC
- (BOOL) hasDefault

Return Value

True if the ISettingDescriptor object contains a default value for the parent IProperty object.

 77

3.16.3 Default

Default returns the default value for the parent IProperty object, if it has one.

Syntax

.Net
C# ISettingValue Default()

C++ ISettingValue^ Default()

VB Function Default As ISettingValue

ObjC
- (P1CaptureCore_SettingValue *) default

Return Value

A reference to an ISettingValue object that represents the default value for the parent

IProperty object. A NULL reference is returned if the property doesn’t have a default value.

Remarks

An application can call HasDefault to test if there is a default value.

3.16.4 HasRange

HasRange returns true if the parent IProperty object has a range limit. If true, then

RangeMinimum and RangeMaximum can be used to retrieve the minimum and maximum

range values.

Syntax

.Net
C# bool HasRange()

C++ bool HasRange()

VB Function HasRange As Boolean

ObjC
- (BOOL) hasRange

Return Value

True if the ISettingDescriptor object has a range limit, that is it contains a minimum and

maximum range value for the parent IProperty object.

3.16.5 RangeMinimum

RangeMinimum returns the minimum range value for the parent IProperty object, if it has

one.

Syntax

.Net
C# ISettingValue RangeMinimum()

C++ ISettingValue^ RangeMinimum()

VB Function RangeMinimum As ISettingValue

ObjC
- (P1CaptureCore_SettingValue *) rangeMinimum

 78

Return Value

A reference to an ISettingValue object that represents the minimum value for the parent

IProperty object. A NULL reference is returned if the property doesn’t have a range limit.

Remarks

If there is a range limit, then both the minimum and maximum range values will be defined.

An application can call HasRange to test if there is a range limit.

3.16.6 RangeMaximum

RangeMaximum returns the maximum range value for the parent IProperty object, if it has

one.

Syntax

.Net
C# ISettingValue RangeMaximum()

C++ ISettingValue^ RangeMaximum()

VB Function RangeMaximum As ISettingValue

ObjC
- (P1CaptureCore_SettingValue *) rangeMaximum

Return Value

A reference to an ISettingValue object that represents the maximum value for the parent

IProperty object. A NULL reference is returned if the property doesn’t have a range limit.

Remarks

If there is a range limit, then both the minimum and maximum range values will be defined.

An application can call HasRange to test if there is a range limit.

3.16.7 HasValueList

HasValueList returns true if there is a list of values that the parent IProperty object can be set

to. If true, then GetValueList can be used to retrieve the list.

Syntax

.Net
C# bool HasValueList()

C++ bool HasValueList()

VB Function HasValueList As Boolean

ObjC
- (BOOL) hasValueList

Return Value

True if the ISettingDescriptor object contains a list of values that the parent IProperty object

can be set to.

Remarks

If HasValueList returns true, the method IsValueListSelectOnly can be used to determine if

the list is select-only or not.

 79

3.16.8 IsValueListSelectOnly

IsValueListSelectOnly returns true if the parent IProperty object can only be set to values

from the list returned by GetValueList.

Syntax

.Net
C# bool IsValueListSelectOnly()

C++ bool IsValueListSelectOnly()

VB Function IsValueListSelectOnly As Boolean

ObjC
- (BOOL) isValueListSelectOnly

Return Value

True if the ISettingDescriptor object contains a list of values that the parent IProperty object

can be set to, and the IProperty object can only be set to values from this list.

Remarks

A list of values can be a list of common or suggested values, or it could be a select-only list

of values that must be chosen from. The IsValueListSelectOnly method will return true for the

latter case.

3.16.9 GetValueList

GetValueList returns an optional list of values that the parent IProperty object can be set to.

Syntax

.Net
C# ISettingValueList GetValueList()

C++ ISettingValueList^ GetValueList()

VB Function GetValueList As ISettingValueList

ObjC
- (P1CaptureCore_SettingValueList *) getValueList

Return Value

A reference to an ISettingValueList object that contains ISettingValue objects that represent

values that the parent IProperty object can be set to. A NULL reference or an empty list is

returned if no values are defined.

Remarks

The list returned by GetValueList could be either a list of suggested values or a list of select-

only values. If IsValueListSelectOnly returns true, the list is a select-only value list and the

parent IProperty object can only be set to values from the list. If IsValueListSelectOnly

returns false, then IProperty object can be set to any value that is in range as well as those in

the value list. In this case, the value list is only a list of suggested or common values.

3.16.10 ValidateValue

ValidateValue tests whether an IValueRead object has a value that is valid for the parent

IProperty object, and throws an exception if it is not. A value is valid if it is in range or in the

value list, if any.

 80

Syntax

.Net
C# void ValidateValue(IValueRead value)

C++ void ValidateValue(IValueRead^ value)

VB Sub ValidateValue(value As IValueRead)

ObjC
- (void) validateValue: (P1CaptureCore_ValueRead *) value

Parameters

value A reference to an IValueRead object whose value will be tested

for validity.

Remarks

An exception is thrown if value is not a valid setting for the parent IProperty object.

Typically this is an out of range exception.

If the value type of value is not the same as value type of the ISettingDescriptor object (or not

compatible with it), then value is invalid and an exception is thrown.

If the ISettingDescriptor has a value list and value matches an entry in the list, then value is

always valid and no further tests are performed. If it does not match an entry in the list and

the list is select-only, then value is invalid and an exception is thrown.

If there is a range limit and value is outside the minimum and maximum values, then value is

invalid and an exception is thrown.

 81

3.17 ISettingValueList (P1CaptureCore_SettingValueList)

The ISettingValueList class is a list container for ISettingValue objects. It is a child object of

ISettingDescriptor, and inherits from IChildObject and IObjectList.

Members

ValueType Returns the type of values contained within the list. All values in the list are of

the same type.

Inherited from IChildObject

Parent Returns the parent ISettingDescriptor object of this object.

Inherited from IObjectList

Size Returns the number of ISettingValue items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first ISettingValue item in the list.

Last Returns a reference to the last ISettingValue item in the list.

Next Returns a reference to the next ISettingValue item in the list following a

specified ISettingValue item already in the list.

Previous Returns a reference to the previous ISettingValue item in the list preceding a

specified ISettingValue item already in the list.

Insert Inserts a new item in front of another specified ISettingValue item in the list.

Requires insert access rights.

Remove Removes a specified ISettingValue item from the list. Requires remove access

rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess Returns the access rights for this list as a bitmask of EnumListAccess values.

HasAccess Returns true if the list allows the specified access rights.

3.17.1 ValueType

ValueType returns the type of values contained within the list. All values in the list are of the

same type.

Syntax

.Net
C# EnumValueType ValueType { get; }

C++
property EnumValueType^ ValueType

 { EnumValueType^ get(); }

VB ReadOnly Property ValueType As EnumValueType

ObjC
- (EnumValueType) valueType

Return Value

An EnumValueType enumeration value that indicates the value type of the ISettingValue

objects in the ISettingValueList object.

 82

Remarks

The value type of an ISettingValueList object doesn’t change after the object is created.

 83

3.18 ISettingValue (P1CaptureCore_SettingValue)

The ISettingValue class describes a value that an IProperty object can be set to. ISettingValue

objects are read-only and owned by a parent ISettingDescriptor object, which is itself owned

by the associated IProperty object.

ISettingValue objects are read-only objects, however their values can change dynamically, in

response to method calls or events. A setting descriptor change event is sent by the

ICaptureObject object that is indirectly the parent of the ISettingValue object, whenever the

object’s value changes (see the specific class description for the event ID).

ISettingValue is a child object of ISettingDescriptor, and inherits from IChildObject and

IValueRead.

Members

Inherited from IChildObject

Parent Returns the parent ISettingDescriptor object of this object.

Inherited from IValueRead

ValueType Returns the value type (Boolean, integer, string, etc) of the object.

IsUndefined Returns true if the object’s value is undefined.

GetValue Gets the value of the object if the type of the object and the type

passed to GetValue are compatible. One can always get a string

representation for all value types. GetValue is available on platforms

that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed

integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit unsigned

integer (or enumeration).

GetValueInt64 Returns the value of the object if its value type is a 64-bit signed

integer.

GetValueUInt64 Returns the value of the object if its value type is a 64-bit unsigned

integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit floating

point.

GetValueString Returns the value of the object if its value type is a string, or a string

representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration

(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit

signed integer).

GetValuePointFloat Returns the value of the object if its value type is a point (64-bit

floating point).

 84

GetValueArea Returns the value of the object if its value type is an area (32-bit

signed integer).

GetValueAreaFloat Returns the value of the object if its value type is an area (64-bit

floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit

signed integer).

GetValueRectFloat Returns the value of the object if its value type is a rectangle (64-bit

floating point).

Compare Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less

than, greater than or equal to the other object.

 85

3.19 IRootObject (P1CaptureCore_RootObject)

All CaptureCore class interfaces are derived from IRootObject. IRootObject represents

functionality that is common to all CaptureCore classes. Currently IRootObject has no

methods and is a place holder for future functionality. It does not exist as an object on its

own, and is only accessible via a derived class.

 86

3.20 IChildObject (P1CaptureCore_ChildObject)

The IChildObject base class provides common functionality for all CaptureCore objects that

are a child of another CaptureCore object. It does not exist as an object on its own, and is

only accessible via a derived class.

Members

Parent Returns the parent object of this object.

3.20.1 Parent

Parent returns the parent object of this object.

Syntax

.Net
C# ParentType Parent()

C++ ParentType^ Parent()

VB Function Parent As ParentType

ObjC
- (P1CaptureCore_RootObject *) parent

Return Value

The parent object of this object. A NULL reference is returned if this object currently has no

parent, that is if this object is an orphaned child object.

In development environments where generics or templates are supported, such as .NET, the

type of the parent object matches the immediate parent of this object in the data hierarchy. In

other environments, such as ObjC, the return type is always a IRootObject.

Remarks

If the type of the return value is not directly useful, it can be cast to a valid base class or a

derived class of the parent class. Dynamic or type-safe casting should always be used to

verify that the parent object is actually of the desired class before performing the type cast.

 87

3.21 IObjectList (P1CaptureCore_ObjectList)

The IObjectList base class provides a common set of list container functionality for

CaptureCore objects. It does not exist as an object on its own, and is only accessible via a

derived class.

Many object lists in CaptureCore dynamically change in response to method calls or events.

When an IObjectList object is returned from a method call, it is generally a copy of another

internally maintained object list. Thus it is a snapshot of the state of the internal list at the

time the list was retrieved. This allows the returned list to be used without any problems that

may arise from dynamic changes – only the internal object list is changed dynamically. An

event is generally sent when an internal list changes, and subsequently the application can

retrieve a new copy of the internal list.

Members

Size Returns the number of items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first item in the list.

Last Returns a reference to the last item in the list.

Next Returns a reference to the next item in the list following a specified item already

in the list.

Previous Returns a reference to the previous item in the list preceding a specified item

already in the list.

Insert Inserts a new item in front of another specified item in the list. Requires insert

access rights.

Remove Removes an item from the list. Requires remove access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess Returns the access rights for this list as a bitmask of EnumListAccess values.

HasAccess Returns true if the list allows the specified access rights.

3.21.1 Size

Size returns the number of items in the list.

Syntax

.Net
C# uint Size()

C++ System::UInt32 Size()

VB Function Size As UInteger

ObjC
- (uint32_t) size

Return Value

The number of items in the list.

 88

3.21.2 IsEmpty

IsEmpty returns true if the list is empty.

Syntax

.Net
C# bool IsEmpty()

C++ bool IsEmpty()

VB Function IsEmpty As Boolean

ObjC
- (BOOL) isEmpty

Return Value

True if the list is empty, that is if its size is zero.

3.21.3 First

First returns a reference to the first item in the list.

Syntax

.Net
C# ItemType First()

C++ ItemType^ First()

VB Function First As ItemType

ObjC
- (P1CaptureCore_RootObject *) first

Return Value

A reference to the first item in the list. A NULL reference is returned if the list is empty.

3.21.4 Last

Last returns a reference to the last item in the list.

Syntax

.Net
C# ItemType Last()

C++ ItemType^ Last()

VB Function Last As ItemType

ObjC
- (P1CaptureCore_RootObject *) last

Return Value

A reference to the list item in the list. A NULL reference is returned if the list is empty.

3.21.5 Next

Next returns a reference to the next item in the list following a specified item already in the

list.

 89

Syntax

.Net
C# ItemType Next(ItemType index)

C++ ItemType^ Next(ItemType^ index)

VB Function Next(index As ItemType) As ItemType

ObjC
- (P1CaptureCore_RootObject *) next: (P1CaptureCore_RootObject *) index

Parameters

index A reference to an item in the list.

Return Value

A reference to the next item in the list following the item referred to by index. A NULL

reference is returned, if is index is the last item, or if index is not in the list or is itself a NULL

reference.

Remarks

Next can be used with First to iterate forwards through all the items in the list.

3.21.6 Previous

Previous returns a reference to the previous item in the list preceding a specified item already

in the list.

Syntax

.Net
C# ItemType Previous(ItemType index)

C++ ItemType^ Previous(ItemType^ index)

VB Function Previous(index As ItemType) As ItemType

ObjC
- (P1CaptureCore_RootObject *) previous: (P1CaptureCore_RootObject *) index

Parameters

index A reference to an item in the list.

Return Value

A reference to the previous item in the list preceding the item referred to by index. A NULL

reference is returned, if index is the first item, or if index is not in the list or is itself a NULL

reference.

Remarks

Previous can be used with Last to iterate backwards through all the items in the list.

3.21.7 Insert

Insert inserts a new item in front of another specified item in the list. Requires insert access

rights.

Syntax

.Net
C# bool Insert(ItemType item, ItemType before)

 90

C++ bool Insert(ItemType^ item, ItemType^ before)

VB Function Insert(item As ItemType, before As ItemType) As Boolean

ObjC
- (void) insert: (P1CaptureCore_RootObject *) item

 before: (P1CaptureCore_RootObject *) before

Parameters

item A reference to an item to insert in the list. If item is already in

the list or is a NULL reference, then Insert does nothing.

before An optional reference to an item already in the list that item

should be inserted after. If before is a NULL reference or not in

the list, then item is inserted at the end of the list.

Return Value

True if item was added to the list, otherwise false. False is returned if item is already in the

list or is a NULL reference.

Remarks

To call Insert, the application must have insert access rights (kListAccess_Insert) for the

IObjectList object, otherwise an exception will be thrown. HasAccess can be used to test if

the application has specific access rights for the IObjectList object.

3.21.8 Remove

Remove removes an item from the list. Requires remove access rights.

Syntax

.Net
C# bool Remove(ItemType item)

C++ bool Remove(ItemType^ item)

VB Function Remove(item As ItemType) As Boolean

ObjC
- (void) remove: (P1CaptureCore_RootObject *) item

Parameters

item A reference to an item in the list to remove. If item is not in the

list or is a NULL reference, then Remove does nothing.

Return Value

True if the item was in the list and thus removed, otherwise false.

Remarks

To call Remove, the application must have remove access rights (kListAccess_Remove) for

the IObjectList object, otherwise an exception will be thrown. HasAccess can be used to test

if the application has specific access rights for the IObjectList object.

3.21.9 Clear

Clear removes all items from the list. Requires remove access rights.

 91

Syntax

.Net
C# void Clear()

C++ void Clear()

VB Sub Clear

ObjC
- (void) clear

Remarks

To call Clear, the application must have remove access rights (kListAccess_Remove) for the

IObjectList object, otherwise an exception will be thrown. HasAccess can be used to test if

the application has specific access rights for the IObjectList object.

3.21.10 GetAccess

GetAccess returns the access rights for this list as a bitmask of EnumListAccess values.

Syntax

.Net
C# EnumListAccess GetAccess()

C++ EnumListAccess GetAccess()

VB Function GetAccess As EnumListAccess

ObjC
- (uint32_t) getAccess

Return Value

A bitmask of EnumListAccess enumeration values indicating which access rights the

application has for the IListObject object.

Remarks

Different IListObject objects throughout CaptureCore will allow the application different

access rights to the list. Some lists are read-only, while others can be removed from but not

inserted to, and some allow full access.

3.21.11 HasAccess

HasAccess returns true if the list allows the specified access rights.

Syntax

.Net
C# bool HasAccess(EnumListAccess access)

C++ bool HasAccess(EnumListAccess access)

VB Function HasAccess(access As EnumListAccess) As Boolean

ObjC
- (BOOL) hasAccess: (uint32_t) access

Parameters

access A bitmask combination of EnumListAccess enumeration values

of the access rights to test for.

 92

Return Value

True if the list allows all the access rights specified in access, otherwise false.

Remarks

Different IListObject objects throughout CaptureCore will allow the application different

access rights to the list. Some lists are read-only, while others can be removed from but not

inserted to, and some allow full access.

 93

3.22 IValueRead (P1CaptureCore_ValueRead)

The IValueRead base class provides a common set of functionality for objects that contain a

value (number, string, Boolean, etc). IValueRead only provides reading functionality, the

IValueWrite class provides writing functionality for objects where the value can be modified.

IValueRead does not exist as an object on its own, and is only accessible via a derived class.

An IValueRead object can contain an undefined value. If the IValueRead method IsUndefined

returns true, the object’s value is undefined and cannot be interpreted by the application.

Applications should not call any of the get value methods if the IValueRead object indicates

that its value is undefined.

Members

ValueType Returns the value type (Boolean, integer, string, etc) of the object.

IsUndefined Returns true if the object’s value is undefined.

GetValue Gets the value of the object if the type of the object and the type

passed to GetValue are compatible. One can always get a string

representation for all value types. GetValue is available on platforms

that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed

integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit unsigned

integer (or enumeration).

GetValueInt64 Returns the value of the object if its value type is a 64-bit signed

integer.

GetValueUInt64 Returns the value of the object if its value type is a 64-bit unsigned

integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit floating

point.

GetValueString Returns the value of the object if its value type is a string, or a string

representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration

(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit

signed integer).

GetValuePointFloat Returns the value of the object if its value type is a point (64-bit

floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit

signed integer).

GetValueAreaFloat Returns the value of the object if its value type is an area (64-bit

floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit

signed integer).

 94

GetValueRectFloat Returns the value of the object if its value type is a rectangle (64-bit

floating point).

Compare Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less

than, greater than or equal to the other object.

3.22.1 ValueType

ValueType returns the value type (Boolean, integer, string, etc) of the object.

Syntax

.Net
C# EnumValueType ValueType { get; }

C++
property EnumValueType^ ValueType

 { EnumValueType^ get(); }

VB ReadOnly Property ValueType As EnumValueType

ObjC
- (EnumValueType) valueType

Return Value

An EnumValueType enumeration value that indicates the value type of the IValueRead

object.

Remarks

The value type of an IValueRead object doesn’t change after the object is created.

3.22.2 IsUndefined

IsUndefined returns true if the object’s value is undefined.

An IValueRead object can contain an undefined value, that is a value that is not specified.

This allows CaptureCore to report values that are unknown, invalid, or in some other way

indeterminate. Such a value cannot be interpreted by the application.

Syntax

.Net
C# bool IsUndefined()

C++ bool IsUndefined()

VB Function IsUndefined As Boolean

ObjC
- (BOOL) isUndefined

Return Value

True if the value of the IValueRead object is undefined, otherwise false.

Remarks

If IsUndefined returns true, an application should not call any of the get value methods nor

try to interpret the object’s value.

IsUndefined always returns true if the value type of the object is kValueType_Undefined.

However, it can also be undefined for all other value types.

 95

3.22.3 Get Value Methods

There are several different methods that retrieve the value of the IValueRead object.

GetValue gets the value of the object if the type of the object and the type passed to GetValue

are compatible. GetValue is available on platforms that support overloading. GetValueBool,

GetValueInt32, GetValueUInt32, GetValueInt64, GetValueUInt64, GetValueFloat64,

GetValueString, and GetValueEnum return the value of the object if its value type matches

the method called.

One can always get a string representation for all value types by calling GetValue with a

string argument or GetValueString. In the case of an enumeration value type, in addition to

GetValueEnum, one can also call GetValue with a 32-bit signed or unsigned integer, or

GetValueInt32 or GetValueUInt32.

The following table summarizes which methods can be called for each value type.

kValueType_Undefined None

kValueType_Bool GetValue, GetValueString, GetValueBool

kValueType_Int32 GetValue, GetValueString, GetValueInt32

kValueType_UInt32 GetValue, GetValueString, GetValueUInt32

kValueType_Int64 GetValue, GetValueString, GetValueInt64

kValueType_UInt64 GetValue, GetValueString, GetValueUInt64

kValueType_Float64 GetValue, GetValueString, GetValueFloat64

kValueType_String GetValue, GetValueString

kValueType_Enum
GetValue, GetValueString, GetValueEnum, GetValueInt32,

GetValueUInt32

kValueType_Point GetValue, GetValueString, GetValuePoint

kValueType_PointFloat GetValue, GetValueString, GetValuePointFloat

kValueType_Area GetValue, GetValueString, GetValueArea

kValueType_AreaFloat GetValue, GetValueString, GetValueAreaFloat

kValueType_Rect GetValue, GetValueString, GetValueRect

kValueType_RectFloat GetValue, GetValueString, GetValueRectFloat

Syntax

.Net

C#

void GetValue(out bool value)

void GetValue(out int value)

void GetValue(out uint value)

void GetValue(out long value)

void GetValue(out ulong value)

void GetValue(out double value)

void GetValue(out string value)

void GetValue(out System.Drawing.Point value)

void GetValue(out System.Drawing.PointF value)

void GetValue(out System.Drawing.Size value)

void GetValue(out System.Drawing.SizeF value)

void GetValue(out System.Drawing.Rectangle value)

void GetValue(out System.Drawing.RectangleF value)

 96

bool GetValueBool()

int GetValueInt32()

uint GetValueUInt32()

long GetValueInt64()

ulong GetValueUInt64()

double GetValueFloat64()

string GetValueString()

int GetValueEnum()

System.Drawing.Point GetValuePoint()

System.Drawing.PointF GetValuePointFloat()

System.Drawing.Size GetValueArea()

System.Drawing.SizeF GetValueAreaFloat()

System.Drawing.Rectangle GetValueRectangle()

System.Drawing.RectangleF GetValueRectangleFloat()

C++

void GetValue(

 [System::Runtime::InteropServices::Out] bool% value)

void GetValue(

 [System::Runtime::InteropServices::Out] System::Int32% value)

void GetValue(

 [System::Runtime::InteropServices::Out] System::UInt32% value)

void GetValue(

 [System::Runtime::InteropServices::Out] System::Int64% value)

void GetValue(

 [System::Runtime::InteropServices::Out] System::UInt64% value)

void GetValue(

 [System::Runtime::InteropServices::Out] double% value)

void GetValue(

 [System::Runtime::InteropServices::Out] System::String^% value)

void GetValue([System::Runtime::InteropServices::Out]

 System::Drawing::Point^% value)

void GetValue([System::Runtime::InteropServices::Out]

 System::Drawing::PointF^% value)

void GetValue([System::Runtime::InteropServices::Out]

 System::Drawing::Size^% value)

void GetValue([System::Runtime::InteropServices::Out]

 System::Drawing::SizeF^% value)

void GetValue([System::Runtime::InteropServices::Out]

 System::Drawing::Rectangle^% value)

void GetValue([System::Runtime::InteropServices::Out]

 System::Drawing::RectangleF^% value)

bool GetValueBool()

System::Int32 GetValueInt32()

System::UInt32 GetValueUInt32()

System::Int64 GetValueInt64()

System::UInt64 GetValueUInt64()

double GetValueFloat64()

System::String^ GetValueString()

System::Int32 GetValueEnum()

System::Drawing::Point^ GetValuePoint()

System::Drawing::PointF^ GetValuePointFloat()

 97

System::Drawing::Size^ GetValueArea()

System::Drawing::SizeF^ GetValueAreaFloat()

System::Drawing::Rectangle^ GetValueRect()

System::Drawing::RectangleF^ GetValueRectFloat()

VB

Sub GetValue(ByRef value As Boolean)

Sub GetValue(ByRef value As Integer)

Sub GetValue(ByRef value As UInteger)

Sub GetValue(ByRef value As Long)

Sub GetValue(ByRef value As ULong)

Sub GetValue(ByRef value As Double)

Sub GetValue(ByRef value As String)

Sub GetValue(ByRef value As System.Drawing.Point)

Sub GetValue(ByRef value As System.Drawing.PointF)

Sub GetValue(ByRef value As System.Drawing.Size)

Sub GetValue(ByRef value As System.Drawing.SizeF)

Sub GetValue(ByRef value As System.Drawing.Rectangle)

Sub GetValue(ByRef value As System.Drawing.RectangleF)

Function GetValueBool As Boolean

Function GetValueInt32 As Integer

Function GetValueUInt32 As UInteger

Function GetValueInt64 As Long

Function GetValueUInt64 As ULong

Function GetValueFloat64 As Double

Function GetValueString As String

Function GetValueEnum As Integer

Function GetValuePoint As System.Drawing.Point

Function GetValuePointFloat As System.Drawing.PointF

Function GetValueArea As System.Drawing.Size

Function GetValueAreaFloat As System.Drawing.SizeF

Function GetValueRect As System.Drawing.Rectangle

Function GetValueRectFloat As System.Drawing.RectangleF

ObjC
- (BOOL) getValueBool

- (int32_t) getValueInt32

- (uint32_t) getValueUInt32

- (int64_t) getValueInt64

- (uint64_t) getValueUInt64

- (double) getValueFloat64

- (NSString *) getValueString

- (int32_t) getValueEnum

- (NSValue *) getValuePoint

- (NSValue *) getValuePointFloat

- (NSValue *) getValueArea

- (NSValue *) getValueAreaFloat

- (NSValue *) getValueRect

- (NSValue *) getValueRectFloat

 98

Parameters

value GetValue only. A reference to language specific type that is

compatible with the value type of this IValueRead object. The

value of this IValueRead object is returned via this parameter.

Return Value

A language specific type that is appropriate for the value type requested and that represents

the value of this IValueRead object.

Remarks

All the get value methods (except GetValue with a string parameter or GetValueString) throw

an exception if the requested value type is not compatible with the value type of this

IValueRead object.

3.22.4 Compare

Compare compares this object’s value to another object of the same value type, returning a

signed integer representing if this object is less than, greater than or equal to the other object.

Syntax

.Net
C# int Compare(IValueRead otherValue)

C++ System::Int32 Compare(IValueRead^ otherValue)

VB Function Compare(otherValue As IValueRead) As Integer

ObjC
- (NSComparisonResult) compare: (P1CaptureCore_ValueRead *) otherValue

Parameters

otherValue A reference to another IValueRead object to compare with this

object.

Return Value

An integer value that is zero if this object is equal to otherValue, a positive value if this

object is greater than otherValue, and a negative value if this object is less than otherValue.

Remarks

Compare throws an exception if the value type of otherValue is not the same or not

compatible with the value type of this object.

 99

3.23 IValueWrite (P1CaptureCore_ValueWrite)

The IValueWrite base class provides a common set of functionality for objects that contain a

value (number, string, Boolean, etc). IValueWrite inherits from IValueRead, and provides

both writing and reading functionality (via inherited IValueRead methods). It does not exist

as an object on its own, and is only accessible via a derived class.

IValueWrite objects can be read-only, despite having methods for changing their value. This

is because some methods may return both types of values, a writeable or read-only value. In

these cases, IValueWrite objects are returned, but the IValueWrite method IsReadOnly will

return true. IsReadOnly should always be checked before calling IValueWrite methods.

Members

IsReadOnly Returns true if the object is a read-only object. Set value methods

may not be called on a read-only object.

SetValue Sets the value of the object if the type of the object and the type

passed to SetValue are compatible. SetValue is available on

platforms that support overloading.

SetValueBool Sets the value of the object if its value type is a Boolean.

SetValueInt32 Sets the value of the object if its value type is a 32-bit signed integer

(or enumeration).

SetValueUInt32 Sets the value of the object if its value type is a 32-bit unsigned

integer (or enumeration).

SetValueInt64 Sets the value of the object if its value type is a 64-bit signed integer.

SetValueUInt64 Sets the value of the object if its value type is a 64-bit unsigned

integer.

SetValueFloat64 Sets the value of the object if its value type is a 64-bit floating point.

SetValueString Sets the value of the object if its value type is a string.

SetValueEnum Sets the value of the object if its value type is an enumeration (32-bit

signed integer).

SetValuePoint Sets the value of the object if its value type is a point (32-bit signed

integer).

SetValuePointFloat Sets the value of the object if its value type is a point (64-bit floating

point).

SetValueArea Sets the value of the object if its value type is an area (32-bit signed

integer).

SetValueAreaFloat Sets the value of the object if its value type is an area (64-bit floating

point).

SetValueRect Sets the value of the object if its value type is a rectangle (32-bit

signed integer).

SetValueRectFloat Sets the value of the object if its value type is a rectangle (64-bit

floating point).

 100

Inherited from IValueRead

ValueType Returns the value type (Boolean, integer, string, etc) of the object.

IsUndefined Returns true if the object’s value is undefined.

GetValue Gets the value of the object if the type of the object and the type

passed to GetValue are compatible. One can always get a string

representation for all value types. GetValue is available on platforms

that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed

integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit unsigned

integer (or enumeration).

GetValueInt64 Returns the value of the object if its value type is a 64-bit signed

integer.

GetValueUInt64 Returns the value of the object if its value type is a 64-bit unsigned

integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit floating

point.

GetValueString Returns the value of the object if its value type is a string, or a string

representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration

(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit

signed integer).

GetValuePointFloat Returns the value of the object if its value type is a point (64-bit

floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit

signed integer).

GetValueAreaFloat Returns the value of the object if its value type is an area (64-bit

floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit

signed integer).

GetValueRectFloat Returns the value of the object if its value type is a rectangle (64-bit

floating point).

Compare Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less

than, greater than or equal to the object.

3.23.1 IsReadOnly

IsReadOnly returns true if the object is a read-only object. Set value methods may not be

called on a read-only object.

 101

Syntax

.Net
C# bool IsReadOnly()

C++ bool IsReadOnly()

VB Function IsReadOnly As Boolean

ObjC
- (BOOL) isReadOnly

Return Value

True if the IValueWrite object is read-only.

3.23.2 Set Value Methods

There are several different methods that set the value of the IValueWrite object. SetValue sets

the value of the object if the type of the object and the type passed to SetValue are

compatible. SetValue is available on platforms that support overloading. SetValueBool,

SetValueInt32, SetValueUInt32, SetValueInt64, SetValueUInt64, SetValueFloat64,

SetValueString, and SetValueEnum set the value of the object if its value type matches the

method called.

In the case of an enumeration value type, in addition to SetValueEnum, one can also call

SetValue with a 32-bit signed or unsigned integer, or SetValueInt32 or SetValueUInt32.

The following table summarizes which methods can be called for each value type.

kValueType_Undefined None

kValueType_Bool SetValue, SetValueBool

kValueType_Int32 SetValue, SetValueInt32

kValueType_UInt32 SetValue, SetValueUInt32

kValueType_Int64 SetValue, SetValueInt64

kValueType_UInt64 SetValue, SetValueUInt64

kValueType_Float64 SetValue, SetValueFloat64

kValueType_String SetValue, SetValueString

kValueType_Enum SetValue, SetValueEnum, SetValueInt32, SetValueUInt32

kValueType_Point SetValue, SetValuePoint

kValueType_PointFloat SetValue, SetValuePointFloat

kValueType_Area SetValue, SetValueArea

kValueType_AreaFloat SetValue, SetValueAreaFloat

kValueType_Rect SetValue, SetValueRect

kValueType_RectFloat SetValue, SetValueRectFloat

Syntax

.Net

C#

void SetValue(bool value)

void SetValue(int value)

void SetValue(uint value)

void SetValue(long value)

void SetValue(ulong value)

 102

void SetValue(double value)

void SetValue(string value)

void SetValue(System.Drawing.Point value)

void SetValue(System.Drawing.PointF value)

void SetValue(System.Drawing.Size value)

void SetValue(System.Drawing.SizeF value)

void SetValue(System.Drawing.Rectangle value)

void SetValue(System.Drawing.RectangleF value)

void SetValue(IValueRead value)

void SetValueBool(bool value)

void SetValueInt32(int value)

void SetValueUInt32(uint value)

void SetValueInt64(long value)

void SetValueUInt64(ulong value)

void SetValueFloat64(double value)

void SetValueString(string value)

void SetValueEnum(int value)

void SetValuePoint(System.Drawing.Point value)

void SetValuePointFloat(System.Drawing.PointF value)

void SetValueArea(System.Drawing.Size value)

void SetValueAreaFloat(System.Drawing.SizeF value)

void SetValueRect(System.Drawing.Rectangle value)

void SetValueRectFloat(System.Drawing.RectangleF value)

C++

void SetValue(bool value)

void SetValue(System::Int32 value)

void SetValue(System::UInt32 value)

void SetValue(System::Int64 value)

void SetValue(System::UInt64 value)

void SetValue(double value)

void SetValue(System::String^ value)

void SetValue(System::Drawing::Point^ value)

void SetValue(System::Drawing::PointF^ value)

void SetValue(System::Drawing::Size^ value)

void SetValue(System::Drawing::SizeF^ value)

void SetValue(System::Drawing::Rectangle^ value)

void SetValue(System::Drawing::RectangleF^ value)

void SetValue(IValueRead^ value)

void SetValueBool(bool value)

void SetValueInt32(System::Int32 value)

void SetValueUInt32(System::UInt32 value)

void SetValueInt64(System::Int64 value)

void SetValueUInt64(System::UInt64 value)

void SetValueFloat64(double value)

void SetValueString(System::String^ value)

void SetValueEnum(System::Int32 value)

void SetValuePoint(System::Drawing::Point^ value)

void SetValuePointFloat(System::Drawing::PointF^ value)

 103

void SetValueArea(System::Drawing::Size^ value)

void SetValueAreaFloat(System::Drawing::SizeF^ value)

void SetValueRect(System::Drawing::Rectangle^ value)

void SetValueRectFloat(System::Drawing::RectangleF^ value)

VB

Sub SetValue(value As Boolean)

Sub SetValue(value As Integer)

Sub SetValue(value As UInteger)

Sub SetValue(value As Long)

Sub SetValue(value As ULong)

Sub SetValue(value As Double)

Sub SetValue(value As String)

Sub SetValue(value As System.Drawing.Point)

Sub SetValue(value As System.Drawing.PointF)

Sub SetValue(value As System.Drawing.Size)

Sub SetValue(value As System.Drawing.SizeF)

Sub SetValue(value As System.Drawing.Rectangle)

Sub SetValue(value As System.Drawing.RectangleF)

Sub SetValue(value As IValueRead)

Sub SetValueBool(value As Boolean)

Sub SetValueInt32(value As Integer)

Sub SetValueUInt32(value As UInteger)

Sub SetValueInt64(value As Long)

Sub SetValueUInt64(value As ULong)

Sub SetValueFloat64(value As Double)

Sub SetValueString(value As String)

Sub SetValueEnum(value As Integer)

Sub SetValuePoint(value As System.Drawing.Point)

Sub SetValuePointFloat(value As System.Drawing.PointF)

Sub SetValueArea(value As System.Drawing.Size)

Sub SetValueAreaFloat(value As System.Drawing.SizeF)

Sub SetValueRect(value As System.Drawing.Rectangle)

Sub SetValueRectFloat(value As System.Drawing.RectangleF)

ObjC
- (void) setValue: (P1CaptureCore_ValueRead *) value

- (void) setValueBool: (BOOL) value

- (void) setValueInt32: (int32_t) value

- (void) setValueUInt32: (uint32_t) value

- (void) setValueInt64: (int64_t) value

- (void) setValueUInt64: (uint64_t) value

- (void) setValueFloat64: (double) value

- (void) setValueString: (NSString *) value

- (void) setValueEnum: (int32_t) value

- (void) setValuePoint: (NSValue *) value

- (void) setValuePointFloat: (NSValue *) value

- (void) setValueArea: (NSValue *) value

- (void) setValueAreaFloat: (NSValue *) value

- (void) setValueRect: (NSValue *) value

 104

- (void) setValueRectFloat: (NSValue *) value

Parameters

value A language specific type that is compatible with the value type

of this IValueWrite object, and that contains the value to set.

Remarks

All the set value methods throw an exception if value type of value is not compatible with the

value type of this IValueRead object, or if the IValueWrite object is read-only.

 105

3.24 IErrorSource (P1CaptureCore_ErrorSource)

The IErrorSource base class provides a common set of functionality for classes that can

queue errors. It does not exist as an object on its own, and is only accessible via a derived

class.

Most classes throw exceptions when a method call encounters an error. Classes derived from

IErrorSource, such as all ICaptureObject derived classes (ICaptureProvider, ICamera, and

ICaptureImage), may choose to queue an error instead of throwing an exception. This is

typically done when an error occurs outside of a method call, such as in a background thread.

Such classes will generally still throw exceptions when an error occurs in a method call.

IErrorSource objects maintain an internal queue of IErrorObject objects, and post a

kEventId_Error event whenever a new IErrorObject object is added to the queue.

Applications can call the IErrorSource method GetError to retrieve the next error object in

the queue. Note that the error queue can grow indefinitely if GetError is not called to remove

errors from the queue.

IErrorSource is a parent to IErrorObject objects.

Members

GetError Returns the next IErrorObject object, if any, for the IErrorSource object.

Events

General (EnumGeneralEventId)

kEventId_Error
An error has occurred on a background thread. Indicates that a new IErrorObject object has

been queued by this object.

3.24.1 GetError

GetError returns the next IErrorObject object, if any, for the IErrorSource object.

Syntax

.Net
C# IErrorObject GetError()

C++ IErrorObject^ GetError()

VB Function GetError As IErrorObject

ObjC
- (P1CaptureCore_ErrorObject *) getError

Return Value

A reference to an IErrorObject object that contains the next error in the error queue of the

IErrorSource object. A NULL reference is returned if there are no errors in the error queue.

Remarks

GetError removes the error from the error queue. So subsequent calls to GetError will return

new errors, or a NULL reference if there are no queued errors when the method is called.

3.24.2 kEventId_Error

This event is posted by the IErrorSource object when an IErrorObject object has been added

to the error list of the IErrorSource object.

 106

Arguments

None

 107

3.25 IErrorObject (P1CaptureCore_ErrorObject)

The IErrorObject class contains information about an error encountered by an IErrorSource

derived class. IErrorObject objects are generally created by an IErrorSource object whenever

an error is encountered that can not be reported by throwing an exception. IErrorObjects are

read-only objects.

IErrorObject is a child object of IErrorSource, and inherits from IChildObject.

Members

Type Returns the error type for the error, which is generally one of the

EnumErrorType enumeration values, but can also be other values.

Number Returns the error number for the error, that is unique for a specific

error type.

If the error type is kErrorType_CaptureCore, the error number

corresponds to an EnumCaptureCoreError enumeration value.

TypeName Returns a string describing the error type.

Description Returns a string describing the error.

Detail Returns an optional string containing additional details about the

error.

Inherited from IChildObject

Parent Returns the parent IErrorSource object of this object.

3.25.1 Type

Type returns the error type for the error, which is generally one of the EnumErrorType

enumeration values, but can also be other values.

The error type represents a category or source of an error. There can be many error types, and

the most common are defined by the EnumErrorType enumeration. The error number

returned by the Number method is unique for a specific error type, but errors of different

error types may use the same error number. Therefore, an application should always check

the error type before interpreting the error number.

Syntax

.Net
C# property uint Type;

C++
property System::UInt32 Type

 { System::UInt32 get(); }

VB ReadOnly Property Type As UInteger

ObjC
- (uint32) type

Return Value

An numerical value representing the error type of the IErrorObject object. Generally, the

value will be one of the EnumErrorType enumeration values, but can be other values as well.

 108

Remarks

A specific error is defined by both the error type and the error number. The error type of an

IErrorObject object doesn’t change after the object is created.

3.25.2 Number

Number returns the error number for the error, that is unique for a specific error type.

Syntax

.Net
C# property uint Number;

C++
property System::UInt32 Number

 { System::UInt32 get(); }

VB ReadOnly Property Number As UInteger

ObjC
- (uint32_t) number

Return Value

A numerical value representing the error number of the IErrorObject object. The error

number is unique only for a specific error type.

Remarks

A specific error is defined by both the error type and the error number. If the error type is

kErrorType_CaptureCore, the error number corresponds to an EnumCaptureCoreError

enumeration value. The error number of an IErrorObject object doesn’t change after the

object is created.

3.25.3 TypeName

TypeName returns a string describing the error type.

Syntax

.Net
C# string TypeName { get; }

C++
property System::String^ TypeName

 { System::String^ get(); }

VB ReadOnly Property TypeName As String

ObjC
- (NSString *) typeName

Return Value

A string containing the name of the error type returned by the method Type. A NULL

reference or an empty string can be returned, if no type name is available, but this is very

unlikely.

Remarks

This method can be used to display a description of the type of error, even error types not

defined by the EnumErrorType enumeration.

The type name of an IErrorObject object doesn’t change after the object is created.

 109

3.25.4 Description

Description returns a string describing the error.

Syntax

.Net
C# string Description { get; }

C++
property System::String^ Description

 { System::String^ get(); }

VB ReadOnly Property Description As String

ObjC
- (NSString *) description

Return Value

A string describing the error. The string is generally the same for the error type and error

number of the IErrorObject object. A NULL reference or an empty string can be returned, if

no description is available, but this is very unlikely.

Remarks

The description string of an IErrorObject object doesn’t change after the object is created.

3.25.5 Detail

Detail returns an optional string containing additional details about the error.

Syntax

.Net
C# string Detail { get; }

C++
property System::String^ Detail

 { System::String^ get(); }

VB ReadOnly Property Detail As String

ObjC
- (NSString *) detail

Return Value

A string describing additional details about the error, such as filename, parameter, and so on.

A NULL reference or an empty string will be returned if there is no additional details for the

error.

Remarks

The detail string of an IErrorObject object doesn’t change after the object is created.

 110

3.26 IEventSource (P1CaptureCore_EventSource)

The IEventSource base class provides a common set of functionality for classes that can post

events to event receivers (IEventReceiver derived classes). It does not exist as an object on its

own, and is only accessible via a derived class.

Applications can create an event receiver by implementing an IEventReceiver derived class.

Instances of these application created event receivers can subscribe or unsubscribe to events

posted by an IEventSource object. This is done by adding or removing an IEventReceiver

object to the IEventSource object’s internal receiver list via the methods AddReceiver or

RemoveReceiver.

IEventSource is a parent to IEventObject objects.

Members

AddReceiver
Adds an IEventReceiver object and subscribes to specified events from

the IEventSource object.

RemoveReceiver
Removes a previously added IEventReceiver object, unsubscribing to

specified events from the IEventSource object.

Events

General (EnumGeneralEventId)

kEventId_All Used for subscribing or unsubscribing to all events via AddReceiver or RemoveReceiver.

3.26.1 AddReceiver

AddReceiver adds an IEventReceiver object to the receiver list of the IEventSource object,

and subscribes it to specified events. This method can be called multiple times to subscribe

the same IEventReceiver object to multiple events, or it can subscribe to the event ID

kEventId_All to receive all events.

Syntax

.Net

C#

void AddReceiver(IEventReceiver receiver, System.IntPtr pContext)

void AddReceiver(uint eventID, IEventReceiver receiver,

 System.IntPtr pContext)

C++

void AddReceiver(IEventReceiver^ receiver,

 System::IntPtr pContext)

void AddReceiver(System::UInt32 eventID, IEventReceiver^ receiver,

 System::IntPtr pContext)

VB

Sub AddReceiver(receiver As IEventReceiver,

 pContext As System.IntPtr)

Sub AddReceiver(eventID As UInteger, receiver As IEventReceiver,

 pContext As System.IntPtr)

ObjC
- (void) addReceiver: (id) receiver selector: (SEL) aSelector

 eventID: (uint32_t) eventID

 context: (void *) pContext

Parameters

receiver An instance of an object that has implemented IEventReceiver.

 111

eventID The event ID of the event to subscribe receiver to. Multiple

calls can be made for different event IDs. Pass the event ID

kEventId_All to subscribe to all events.

pContext An optional pointer parameter that is passed to the

IEventReceiver method OnEvent, when the specified events are

delivered. Multiple calls can be made with different pContext

values. Pass a NULL reference if not needed.

aSelector [ObjC only] A selector for which method to call on receiver

when delivering an event. The method must take the same

parameters as the OnEvent method.

Remarks

A call to AddReceiver is ignored if called more than once with the same parameters as a

previous call. If all but the pContext parameter is the same, then the specified events will be

delivered multiple times to receiver, once for each unique pContext value.

When an application no longer needs to receive events from the IEventSource object, for each

call to AddReceiver that was made, a matching call to RemoveReceiver, with the exact same

parameters (including pContext), should be performed.

If a receiver is subscribed to both kEventId_All as well as other events, then the other events

will be delivered twice to the receiver. Matching calls to RemoveReceiver should still be

made for each call to AddReceiver.

3.26.2 RemoveReceiver

RemoveReceiver removes a previously added IEventReceiver object from the receiver list of

the IEventSource object, unsubscribing to specified events.

When an application no longer needs to receive events from the IEventSource object, a

matching call to RemoveReceiver, with the exact same parameters (including pContext),

should be performed, for each call to AddReceiver that was made.

Syntax

.Net

C#

void RemoveReceiver(IEventReceiver receiver, System.IntPtr pContext)

void RemoveReceiver(uint eventID, IEventReceiver receiver,

 System.IntPtr pContext)

C++

void RemoveReceiver(IEventReceiver^ receiver,

 System::IntPtr pContext)

void RemoveReceiver(System::UInt32 eventID, IEventReceiver^ receiver,

 System::IntPtr pContext)

VB

Sub RemoveReceiver(receiver As IEventReceiver,

 pContext As System.IntPtr)

Sub RemoveReceiver(eventID As UInteger, receiver As IEventReceiver,

 pContext As System.IntPtr)

ObjC
- (void) removeReceiver: (id) receiver selector: (SEL) aSelector

 eventID: (uint32_t) eventID

 context: (void *) pContext

 112

Parameters

receiver The instance of the IEventReceiver object that was passed to a

previous call to AddReceiver.

eventID The event ID of the event to unsubscribe receiver from that was

passed to a previous call to AddReceiver. Multiple calls must be

made for each event ID that was passed to AddReceiver. Pass

kEventId_All to unsubscribe to all events.

pContext The pointer parameter that was passed to a previous call to

AddReceiver. Multiple calls must be made for each pContext

value that was passed to AddReceiver.

aSelector [ObjC only] The selector that was passed to a previous call to

AddReceiver.

Remarks

All parameters must match a previous call to AddReceiver, otherwise the call to

RemoveReceiver is ignored. The exception is eventID, which may be set to kEventID_All to

unsubscribe all previous calls to AddReceiver that match the other remaining parameters.

The IEventReceiver object is only removed from the IEventSource object’s receiver list, if

RemoveReceiver calls have been made that match every AddReceiver call for receiver.

If RemoveReceiver is called at the same time an event is being delivered to the OnEvent

method of receiver, the call to RemoveReceiver will wait until OnEvent is completed. This

prevents RemoveReceiver from returning before it can guarantee that OnEvent is done

processing the specified events.

It is completely safe to call RemoveReceiver directly from OnEvent. However, it is important

that OnEvent does not wait on any threads, or make calls that wait on any threads, that could

directly or indirectly call RemoveReceiver for the IEventReceiver object. Otherwise, a

deadlock will occur.

 113

3.27 IEventReceiver (P1CaptureCore_EventReceiver)

The IEventReceiver interface class specifies the methods that need to be implemented by an

application defined class in order to receive events from an IEventSource object. It provides

no functionality of its own and is only an interface specification.

Applications that wish to receive events from an IEventSource object can define as many

classes as they like to implement the IEventReceiver interface. One or more instances of these

IEventReceiver derived classes can be added to each IEventSource object or to multiple

IEventSource objects. IEventReceiver objects can subscribe or unsubscribe to events by

calling the IEventSource methods AddReceiver or RemoveReceiver.

A background thread is created for delivering events for each IEventReceiver object that is

added to an IEventSource object. Only one thread is created per IEventReceiver object added

to an IEventSource object, even if the IEventReceiver object is added more than once in order

to subscribe to different events. If an IEventReceiver object is added to multiple IEventSource

objects, one thread is still created for each IEventSource object.

Events sent from a specific IEventSource object to a specific IEventReceiver are always

delivered sequentially on a single thread. The IEventReceiver will not receive additional

events from that specific IEventSource until it has returned from OnEvent. Note that events

sent to different IEventReceiver objects or received from different IEventSource objects are

delivered on different threads and can be received simultaneously.

Members

OnEvent
This method is called by an IEventSource object when delivering an event in the

form of an IEventObject object.

3.27.1 OnEvent

OnEvent is called by an IEventSource object when delivering an event in the form of an

IEventObject object.

Syntax

.Net
C# void OnEvent(IEventObject eventObj, System.IntPtr pContext)

C++ void OnEvent(IEventObject^ eventObj, System::IntPtr pContext)

VB Sub OnEvent(eventObj As IEventObject, pContext As System.IntPtr)

ObjC
- (void) onEvent: (P1CaptureCore_EventObject *) eventObj

 context: (void *) pContext

Parameters

eventObj An IEventObject object describing an event received from an

IEventSource object.

pContext An optional pointer argument defined when the IEventReceiver

was subscribed to events by calling the IEventSource method

AddReceiver.

 114

Remarks

It is generally a good idea to handle events as quickly as possible, so that other events are not

overly delayed in being delivered. Tasks that take a lengthy time should be performed on

another thread, instead of in OnEvent.

Calls to OnEvent are made in a background thread. There is a single background thread per

IEventSource object that this IEventReceiver is added to. Events from a specific IEventSource

object are delivered sequentially on this thread. However, if the IEventReceiver is added to

multiple IEventSource objects, events are delivered on different threads and possibly at the

same time. An implementation of OnEvent should take care to use thread-synchronization

mechanisms if added to more than one IEventSource object.

If the IEventSource method RemoveReceiver is called for this IEventReceiver at the same

time that OnEvent is called by the background thread, the call to RemoveReceiver will wait

until OnEvent is completed. It is important that OnEvent does not wait on any threads, or

make calls that wait on any threads, that could directly or indirectly call RemoveReceiver for

this IEventReceiver object. Otherwise, a deadlock will occur. It is, however, completely safe

to call RemoveReceiver for this or other IEventReceiver objects directly from OnEvent.

 115

3.28 IEventObject (P1CaptureCore_EventObject)

The IEventObject class contains information about an event received from an IEventSource

derived class. IEventObject objects are read-only objects and are described by a minimum of

an event ID. When an event is sent by an IEventSource object, an IEventObject is delivered to

each IEventReceiver added to the IEventSource and subscribed to the event’s event ID.

IEventObject objects can have an optional number of value arguments (IEventArgument).

This number of arguments and their definition depends upon the individual event. It can

include for example the property ID of a changed property value. See the specific

IEventSource derived class for a list of possible event IDs and their arguments.

IEventObject is a child object of IEventSource, and inherits from IChildObject.

Members

Id Returns the event ID of the IEventObject.

NumberOfArguments Returns the number of optional event arguments.

Argument Returns a specified event argument (IEventArgument).

Inherited from IChildObject

Parent Returns the parent IEventSource object of this object.

3.28.1 Id

Id returns the event ID of the IEventObject.

The event ID specifies which event the IEventObject represents. The event ID is set by the

IEventSource object that posted the event. The event IDs for a specific class are described in

the documentation for each class derived from IEventSource.

Syntax

.Net
C# uint Id { get; }

C++
property System::UInt32 Id

 { System::UInt32 get(); }

VB ReadOnly Property Id As UInteger

ObjC
- (uint32_t) id

Return Value

A numerical value representing the ID of the IEventObject.

Remarks

The event ID of an IEventObject object doesn’t change after the object is created.

3.28.2 NumberOfArguments

NumberOfArguments returns the number of optional event arguments.

Some events can include arguments which are retrieved via the Argument method. The

number of available arguments is returned by this method.

 116

Syntax

.Net
C# uint NumberOfArguments { get; }

C++
property System::UInt32 NumberOfArguments

 { System::UInt32 get(); }

VB ReadOnly Property NumberOfArguments As UInteger

ObjC
- (uint32_t) numberOfArguments

Return Value

The number of arguments that can be retrieved via the Argument method.

Remarks

The number of arguments in the IEventObject doesn’t change after the object is created.

3.28.3 Argument

Argument returns a specified event argument (IEventArgument).

Syntax

.Net
C# IEventArgument Argument(uint index)

C++ IEventArgument^ Argument(System::UInt32 index)

VB Function Argument(index As UInteger) As IEventArgument

ObjC
- (P1CaptureCore_EventArgument *) argument: (uint32_t) index

Parameters

index A zero based index specifying which argument to return. The

first argument is zero, the last argument is one less than the

number of arguments returned by NumberOfArguments.

Return Value

A reference to an IEventArgument object that corresponds to the index parameter. A NULL

reference is returned if there is no argument for the specified index.

Remarks

An IEventArgument object is derived from the IValueRead class and represents simple values

that can be passed with the event. Typical values are the ID of the ICaptureProvider,

ICamera, ICaptureImage, IProperty, or ICapability object associated with the event. See the

documentation for an event ID for the possible event arguments.

 117

3.29 IEventArgument (P1CaptureCore_EventArgument)

The IEventArgument class describes an optional argument value for an instance of an

IEventObject object. An IEventArgument object is a read-only object and inherits from

IValueRead.

IEventObject objects can have an optional number of IEventArgument objects for a given

event. For example, a possible event argument can be the property ID of a changed property

value. Although IEventArgument objects are retrieved from a specific IEventObject object,

IEventArgument objects are not child objects of IEventObject. They are part of the

IEventObject.

Members

Inherited from IValueRead

ValueType Returns the value type (Boolean, integer, string, etc) of the object.

IsUndefined Returns true if the object’s value is undefined.

GetValue

Gets the value of the object if the type of the object and the type

passed to GetValue are compatible. One can always get a string

representation for all value types. GetValue is available on platforms

that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32
Returns the value of the object if its value type is a 32-bit signed

integer (or enumeration).

GetValueUInt32
Returns the value of the object if its value type is a 32-bit unsigned

integer (or enumeration).

GetValueInt64
Returns the value of the object if its value type is a 64-bit signed

integer.

GetValueUInt64
Returns the value of the object if its value type is a 64-bit unsigned

integer.

GetValueFloat64
Returns the value of the object if its value type is a 64-bit floating

point.

GetValueString
Returns the value of the object if its value type is a string, or a string

representation of the value for all other value types.

GetValueEnum
Returns the value of the object if its value type is an enumeration

(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit

signed integer).

GetValuePointFloat Returns the value of the object if its value type is a point (64-bit

floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit

signed integer).

GetValueAreaFloat Returns the value of the object if its value type is an area (64-bit

floating point).

 118

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit

signed integer).

GetValueRectFloat Returns the value of the object if its value type is a rectangle (64-bit

floating point).

Compare

Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less

than, greater than or equal to the other object.

 119

3.30 IProgressSource (P1CaptureCore_ProgressSource)

The IProgressSource base class provides a common set of functionality for classes that can

report progress status for progress tasks. It does not exist as an object on its own, and is only

accessible via a derived class.

IProgressSource is a parent to IProgressStatus objects.

Members

GetProgress Returns the next IProgressStatus object in the progress queue for this object.

Events

General (EnumGeneralEventId)

kEventId_ProgressUpdate Indicates that a new IProgressStatus object has been queued by this object.

3.30.1 GetProgress

GetProgress returns the next IProgressStatus object in the progress queue for this object.

Syntax

.Net
C# IProgressStatus GetProgress()

C++ IProgressStatus^ GetProgress()

VB Function GetProgress As IProgressStatus

ObjC
- (P1CaptureCore_ProgressStatus *) getProgress

Return Value

A reference to the next IProgressStatus object in the progress queue of the IProgressSource

object. A NULL reference is returned if there are no IProgressStatus objects in the progress

queue.

Remarks

GetProgress removes the IProgressStatus object from the progress queue. So subsequent

calls to GetProgress will return new objects, or a NULL reference if there are no queued

objects when the method is called.

3.30.2 kEventId_ProgressUpdate

This event is posted by the IProgressSource object when an IProgressStatus object has been

added to the progress queue of the IProgressSource object.

Arguments

None

 120

3.31 IProgressStatus (P1CaptureCore_ProgressStatus)

The IProgressStatus class provides progress status for an instance of a progress task for an

IProgressSource class. It is essentially a read-only data structure, with an optional capability

to cancel the progress task it is associated with.

IProgressStatus objects are created and queued by the IProgressSource class and retrieved by

a call to GetProgress. When the object is queued, a kEventId_ProgressUpdate event is posted

by the IProgressSource class. Since there is a lag between the creation of the object and its

retrieval by the application, the status reported may not represent the current status, but a

snapshot of the status in the recent past. Therefore, an application should try to retrieve

IProgressStatus objects as quickly as possible.

IProgressStatus is a child object of IProgressSource, and inherits from IChildObject.

Members

Id
Returns the progress status ID for the IProgressStatus object, identifying the

type of progress task the object represents.

Instance
Returns an unique number that is the same for all IProgressStatus objects

that represent the same instance of a progress task.

Description Returns an optional string describing the progress task.

Detail
Returns an optional string with additional detail of what the progress task is

currently performing.

Unit
Returns the unit of the values returned by Current and End as an optional

string. For example “MB” for megabytes.

Current
Returns a numerical value representing the current progress state of the

progress task. The value is always <= End.

End
Returns a numerical value representing the end progress state of the progress

task. This could be zero, if no such value is known.

Percent Returns the current progress state as a percent, if End is defined (not zero).

ElapsedTime Returns the time in milliseconds since the progress task started.

IsDone
Returns true if the progress task is complete. If true, this is the last

IProgressStatus object for the progress task instance.

IsCancelled
Returns true if the progress task has been cancelled. If true, this is the last

IProgressStatus object for the progress task instance.

CanCancel Returns true if the progress task can be cancelled by calling Cancel.

Cancel
Cancels the represented progress task, if it is still active. CanCancel must be

true to call this method.

Inherited from IChildObject

Parent Returns the parent IEventSource object of this object.

3.31.1 Id

Id returns the progress status ID for the IProgressStatus object, identifying the type of

progress task the object represents.

 121

Syntax

.Net
C# uint Id { get; }

C++
property System::UInt32 Id

 { System::UInt32 get(); }

VB ReadOnly Property Id As UInteger

ObjC
- (uint32_t) id

Return Value

The progress status ID for the IProgressStatus object. See the description for each specific

IProgressSource derived class for possible progress status ID values.

Remarks

The ID of an IProgressStatus object doesn’t change after the object is created. It is also the

same for all IProgressStatus objects of the same task instance.

3.31.2 Instance

Instance returns an unique number that is the same for all IProgressStatus objects that

represent the same instance of a progress task.

Syntax

.Net
C# uint Instance { get; }

C++
property System::UInt32 Instance

 { System::UInt32 get(); }

VB ReadOnly Property Instance As UInteger

ObjC
- (uint32_t) instance

Return Value

An unique number representing the progress task instance that created the IProgressStatus

object.

Remarks

All instances of a progress task have an unique instance number, which is assigned to all

IProgressStatus objects created by that task. This number can be used to distinguish between

the progress status of different tasks that are running at the same time, such as capturing two

images at the same time from an ICamera object.

The instance number of an IProgressStatus object doesn’t change after the object is created.

3.31.3 Description

Description returns an optional string describing the progress task.

Syntax

.Net
C# string Description { get; }

C++
property System::String^ Description

 { System::String^ get(); }

 122

VB ReadOnly Property Description As String

ObjC
- (NSString *) description

Return Value

An optional string describing the progress task the status object describes. The string is

generally short and useful for providing a title or heading for a progress task. A NULL

reference or an empty string is returned if no description is available.

Remarks

The description string of an IProgressStatus object doesn’t change after the object is created.

Its value is usually the same in all IProgressStatus objects of the same task instance.

3.31.4 Detail

Detail returns an optional string with additional detail of what the progress task is currently

performing. This is generally useful when the progress task is divided into subtasks, or has

multiple objects to perform the task upon, such as saving multiple files. The string can be the

name of the subtask, or the name of the object, such as a file name.

Syntax

.Net
C# string Detail { get; }

C++
property System::String^ Detail

 { System::String^ get(); }

VB ReadOnly Property Detail As String

ObjC
- (NSString *) detail

Return Value

An optional string with detail of what the progress task is currently doing. A NULL reference

or an empty string is returned if no detail is available.

Remarks

The detail string of an IProgressStatus object doesn’t change after the object is created. Its

value is different in subsequent IProgressStatus objects of the same task instance.

3.31.5 Unit

Unit returns the unit of the values returned by Current and End as an optional string. For

example “MB” for megabytes.

Syntax

.Net
C# string Unit { get; }

C++
property System::String^ Unit

 { System::String^ get(); }

VB ReadOnly Property Unit As String

ObjC
- (NSString *) unit

 123

Return Value

An optional string describing the unit of the values returned by Current and End. A NULL

reference or an empty string is returned if the unit is not defined.

Remarks

The unit string of an IProgressStatus object doesn’t change after the object is created. Its

value is usually the same in all IProgressStatus objects of the same task instance.

3.31.6 Current

Current returns a numerical value representing the current progress state of the progress task.

Syntax

.Net
C# ulong Current { get; }

C++
property System::UInt64 Current

 { System::UInt64 get(); }

VB ReadOnly Property Current As ULong

ObjC
- (uint64_t) current

Return Value

A numerical value representing the current progress state of the progress task. The value is

always <= End. It returns zero if End is not defined (zero).

Remarks

The value of the current progress state of an IProgressStatus object doesn’t change after the

object is created. Its value is different in subsequent IProgressStatus objects of the same task

instance.

3.31.7 End

End returns a numerical value representing the end progress state of the progress task.

Syntax

.Net
C# ulong End { get; }

C++
property System::UInt64 End

 { System::UInt64 get(); }

VB ReadOnly Property End As ULong

ObjC
- (uint64_t) end

Return Value

A numerical value representing the end length or state of the progress task. It will return zero

for tasks without a defined length, such as waiting for a device to respond to a request.

Remarks

If the progress task has an undefined length, an application can still use the value returned by

ElapsedTime to provide the user with a sense of progress.

 124

The value of the end progress state of an IProgressStatus object doesn’t change after the

object is created. Its value is usually the same in all IProgressStatus objects of the same task

instance, but is allowed to change.

3.31.8 Percent

Percent returns the current progress state as a percent, if End is defined (not zero).

Syntax

.Net
C# double Percent { get; }

C++
property double Percent

 { double get(); }

VB ReadOnly Property Percent As Double

ObjC
- (double) percent

Return Value

A floating point value representing the current progress state as a percent. This value is

equivalent to dividing Current by End. It returns 0.0 if End is undefined (zero).

Remarks

The percent value of an IProgressStatus object doesn’t change after the object is created. Its

value is different in subsequent IProgressStatus objects of the same task instance.

3.31.9 Elapsed Time

Returns the time in milliseconds since the progress task started.

Syntax

.Net
C# uint ElapsedTime { get; }

C++
property System::UInt32 ElapsedTime

 { System::UInt32 get(); }

VB ReadOnly Property ElapsedTime As UInteger

ObjC
- (uint32_t) elapsedTime

Return Value

The time in milliseconds since the progress task started, at the moment the IProgressStatus

object was created and queued. ElapsedTime doesn’t include any time between the creation

of the object and a call to the method.

Remarks

The percent value of an IProgressStatus object doesn’t change after the object is created. Its

value is different in subsequent IProgressStatus objects of the same task instance.

3.31.10 IsDone

IsDone returns true if the progress task is complete.

 125

Syntax

.Net
C# bool IsDone()

C++ bool IsDone()

VB Function IsDone As Boolean

ObjC
- (BOOL) isDone

Return Value

A Boolean value that is true if the progress task is complete. If true, this is the last

IProgressStatus object for the progress task instance.

3.31.11 IsCancelled

Returns true if the progress task has been cancelled.

Syntax

.Net
C# bool IsCancelled()

C++ bool IsCancelled()

VB Function IsCancelled As Boolean

ObjC
- (BOOL) isCancelled

Return Value

A Boolean value that is true if the progress task has been cancelled. If true, this is the last

IProgressStatus object for the progress task instance.

Remarks

A progress task can be cancelled internally by an object, usually in response to an error, or it

may be cancelled by calling the IProgressStatus Cancel method for the progress task instance

that the application wishes to cancel.

3.31.12 CanCancel

Returns true if the progress task can be cancelled by calling Cancel.

Syntax

.Net
C# bool CanCancel()

C++ bool CanCancel()

VB Function CanCancel As Boolean

ObjC
- (BOOL) canCancel

Return Value

A Boolean value that is true if the progress task can be cancelled by calling Cancel.

Remarks

This method can be used to determine if a cancel button is displayed by the application for

the progress task.

 126

3.31.13 Cancel

Cancels the represented progress task, if it is still active.

Syntax

.Net
C# void Cancel()

C++ void Cancel()

VB Sub Cancel

ObjC
- (void) cancel

Remarks

Not all progress tasks can be cancelled. Calls to this method are ignored if CanCancel is

false. In addition, calling cancel after the progress task is completed will have no affect.

 127

4 Enumeration Reference

The general enumerations not used for capabilities, properties and events are described in this

section.

4.1 EnumErrorType

EnumErrorType defines some of the possible error types that an IErrorObject can represent.

Not all error types are defined, just those commonly encountered.

kErrorType_Unknown An unknown error type.

kErrorType_System An operating system error.

kErrorType_StdErrno A standard C errno error.

kErrorType_StdException A standard C++ std::exception error.

kErrorType_CaptureCore CaptureCore errors. See Error Reference.

4.2 EnumValueType

EnumValueType defines the data type of the value represented by an IValueRead or

IValueWrite derived class.

kValueType_Undefined An undefined or unknown value type.

kValueType_Bool A Boolean value that can be true or false.

kValueType_Int32 A signed 32-bit integer value.

kValueType_UInt32 An unsigned 32-bit integer value.

kValueType_Int64 A signed 64-bit integer value.

kValueType_UInt64 An unsigned 64-bit integer value.

kValueType_Float64 A 64-bit floating-point value.

kValueType_String A Unicode string value.

kValueType_Enum An enumeration value compatible with a signed/unsigned 32-bit integer.

kValueType_Point A coordinate point (x, y) specified by two signed 32-bit integer values.

kValueType_PointFloat A coordinate point (x, y) specified by two 64-bit floating-point values.

kValueType_Area An area size (width, height) specified by two signed 32-bit integer values.

kValueType_AreaFloat An area size (width, height) specified by two 64-bit floating-point values.

kValueType_Rect A rectangle (x, y, width, height) specified by four signed 32-bit integer values.

kValueType_RectFloat A rectangle (x, y, width, height) specified by four floating-point values.

kValueType_ColorRGB A RGB color triplet specified by three unsigned 32-bit integer values.

kValueType_ColorRGBFloat A RGB color triplet specified by three 64-bit floating-point values.

kValueType_ColorARGB An ARGB color quadruplet specified by four unsigned 32-bit integer values.

kValueType_ColorARGBFloat An ARGB color quadruplet specified by four 64-bit floating-point values.

 128

4.3 EnumListAccess

EnumListAccess defines the list access rights that a caller has for an object of a list class

derived from IObjectList. EnumListAccess values can be combined together in a bitmask.

kListAccess_View The list object may be iterated and items may be retrieved for viewing.

kListAccess_Modify The list object may be iterated and items may be retrieved for modifying.

kListAccess_Insert New items may be added to the list object.

kListAccess_Remove Items may be removed from the list object.

kListAccess_All All the above access rights.

4.4 EnumCaptureCoreName

EnumCaptureCoreName defines the name strings that can be returned by some CaptureCore

Name methods.

kCaptureCoreName_Vendor
A vendor specific name string, provided by the manufacturer associated with the

object.

kCaptureCoreName_Long A name string provided by Phase One.

kCaptureCoreName_Short
A short name string, provided by Phase One, that is guaranteed to be 20

characters or less.

4.5 EnumImageType

EnumImageType defines the image types that an image object, such as IImageData, can be.

kImageType_Undefined An undefined or unknown image type.

kImageType_Pixel An uncompressed pixel image.

kImageType_Jpeg A JPEG image.

4.6 EnumColorType

EnumColorType defines possible color types that the pixels of an image object, such as

IImageData, can be. The order of color channels in the name of the enumeration match the

order of the color channels in the pixel.

kColorType_Undefined An undefined or unknown color type.

kColorType_RGB_8 Red, green, blue. 8-bits per channel (24-bit pixel).

kColorType_BGR_8 Blue, green, red. 8-bits per channel (24-bit pixel).

kColorType_RGBA_8 Red, green, blue, alpha. 8-bits per channel (32-bit pixel).

kColorType_BGRA_8 Blue, green, red, alpha. 8-bits per channel (32-bit pixel).

kColorType_ARGB_8 Alpha, red, green, blue. 8-bits per channel (32-bit pixel).

kColorType_ABGR_8 Alpha, blue, green, red. 8-bits per channel (32-bit pixel).

kColorType_RGB_16 Red, green, blue. 16-bits per channel (48-bit pixel).

kColorType_BGR_16 Blue, green, red. 16-bits per channel (48-bit pixel).

 129

4.7 EnumImageOrientation

EnumImageOrientation defines the orientations that an image object, such as IImageData,

can have.

kImageOrientation_0 The image capture device was rotated 0 degrees (i.e. not rotated).

kImageOrientation_90 The image capture device was rotated 90 degrees clockwise.

kImageOrientation_180 The image capture device was rotated 180 degrees.

kImageOrientation_270 The image capture device was rotated 270 degrees clockwise.

kImageOrientation_TopLeft
The first pixel row/column is the top/left edge of the image.

The same as kImageOrientation_0.

kImageOrientation_RightTop
The first pixel row/column is the right/top edge of the image.

The same as kImageOrientation_90.

kImageOrientation_BottomRight
The first pixel row/column is the bottom/right edge of the image.

The same as kImageOrientation_180.

kImageOrientation_LeftBottom
The first pixel row/column is the left/bottom edge of the image.

The same as kImageOrientation_270.

4.8 EnumCameraType

EnumCameraType defines the camera types that an ICamera object can have, and that can be

retrieved by the kCameraProperty_Type property.

kCameraType_DB A digital back.

kCameraType_DSLR A DSLR (digital single lens reflex) camera.

4.9 EnumCameraRestore

EnumCameraRestore defines the device components that an ICamera object can have, and

that can be restored by the RestoreDefault method.

kCameraRestore_All Restores all settings for the device.

kCameraRestore_DigitalBack
Restores only the digital back settings. This value is only applicable if the

device associated with an ICamera object is a digital back.

kCameraRestore_Camera

Restores only the camera body settings. This value is only applicable if the

device associated with an ICamera object is a digital back, and a camera body

is attached.

 130

4.10 EnumCameraOrientationMode

EnumCameraOrientationMode defines the possible orientation modes that an ICamera object

can be set to via the kCameraProperty_CameraOrientationMode. The mode used during the

capture of an image is stored in kCaptureImageProperty_CameraOrientationMode.

kCameraOrientationMode_Undefined An undefined or unknown camera orientation mode.

kCameraOrientationMode_Auto Use the internal orientation sensor to determine orientation.

kCameraOrientationMode_0
Set the orientation to 0 degrees.

Do not use the internal orientation sensor.

kCameraOrientationMode_90
Set the orientation to 90 degrees clockwise.

Do not use the internal orientation sensor.

kCameraOrientationMode_180
Set the orientation to 180 degrees.

Do not use the internal orientation sensor.

kCameraOrientationMode_270
Set the orientation to 270 degrees clockwise.

Do not use the internal orientation sensor.

4.11 EnumFocusAdjustDiscrete

EnumFocusAdjustDiscrete defines a set of discrete adjustments to a devices focus, that can be

set via an ICamera object using the kCameraProperty_FocusAdjustDiscrete property.

kFocusAdjust_NearEnd Adjusts the focus to the closest possible focus distance.

kFocusAdjust_NearCoarse Adjusts the focus closer (near direction) by a coarse (large) step.

kFocusAdjust_NearMedium Adjusts the focus closer (near direction) by a medium step.

kFocusAdjust_NearFine Adjusts the focus closer (near direction) by a fine (small) step.

kFocusAdjust_None
Does not adjust the focus. This value is always returned by a call to GetValue on

the kCameraProperty_FocusAdjustDiscrete property.

kFocusAdjust_FarFine Adjusts the focus farther away (far direction) by a fine (small) step.

kFocusAdjust_FarMedium Adjusts the focus farther away (far direction) by a medium step.

kFocusAdjust_FarCoarse Adjusts the focus farther away (far direction) by a large step.

kFocusAdjust_FarEnd Adjusts the focus to the farthest possible focus distance (usually infinite).

4.12 EnumFmcMode

EnumFmcMode defines the possible forward motion compensation modes that an ICamera

object can be set to via the kP1CameraProperty_FmcMode. The mode used during the

capture of an image is stored in kP1CaptureImageProperty_FmcMode.For aerial industrial

devices only.

kFmcMode_Off Disable forward motion compensation system

kFmcMode_Forward Enable forward motion compensation system in forward direction

kFmcMode_Backward Enable forward motion compensation system in backward direction

 131

132

5 Error Reference

CaptureCore returns errors via the IErrorObject interface. CaptureCore can return different types of errors, depending upon the source of the

error. Some errors originate in the operating system, some within a development framework, some from device drivers, and some from

CaptureCore itself. For each type of error, there are many possible errors, each with their own unique error number for that type. Error numbers

are not unique across different error types.

It is beyond the scope of this document to describe all the errors for error types originating outside of CaptureCore. Generally, the IErrorObject

provides enough description strings to display the error to the user. However, in some situations it may be of use to the application to test for a

specific CaptureCore error. The following table lists the error enumerations for CaptureCore errors. CaptureCore errors have the error type

kErrorType_CaptureCore (see EnumErrorType).

5.1 CaptureCore Errors

General (EnumCaptureCoreError)
kCaptureCoreError_InvalidParameter The parameter is incorrect or not supported.

kCaptureCoreError_InvalidType The data type is incorrect or not supported.

kCaptureCoreError_InvalidData The data is invalid.

kCaptureCoreError_OutOfRange The value is out of range.

kCaptureCoreError_InvalidSize The size or length is incorrect.

kCaptureCoreError_InvalidIndex The index or identifier is incorrect.

kCaptureCoreError_InvalidSyntax The syntax is incorrect.

kCaptureCoreError_NotImplemented The functionality is not implemented.

kCaptureCoreError_InvalidRequest The request is invalid.

kCaptureCoreError_InvalidState The current state is incorrect.

kCaptureCoreError_NotSupported The resource or request is not supported.

kCaptureCoreError_NotAvailable The resource or request is currently not available.

kCaptureCoreError_NotInitialized The resource is not initialized.

kCaptureCoreError_AlreadyInitialized The resource is already initialized.

kCaptureCoreError_NotOpen The resource is not open.

kCaptureCoreError_AlreadyOpen The resource is already opened.

133

kCaptureCoreError_AccessDenied Access is denied. The resource or request is not available.

kCaptureCoreError_AccessDeniedWrite Access is denied. The value or resource cannot be set or written to.

kCaptureCoreError_AccessDeniedRead Access is denied. The value or resource cannot be retrieved or read from.

kCaptureCoreError_NotConnected The resource is not connected.

kCaptureCoreError_NotEnoughMemory Not enough memory is available.

kCaptureCoreError_UnexpectedError An unexpected error occurred.

kCaptureCoreError_UnexpectedException An unexpected exception occurred.

kCaptureCoreError_UnexpectedResult An unexpected result occurred.

kCaptureCoreError_LimitExceeded A limit is exceeded.

kCaptureCoreError_NotFound The name, item, or resource is not found.

kCaptureCoreError_Timeout The request did not complete within the specified timeout period.

kCaptureCoreError_UnspecifiedError Unspecified error.

kCaptureCoreError_CameraNotConnected The camera is not connected.

Phase One device specific (EnumPhaseOneCaptureCoreError)
kP1CaptureCoreError_HostStorageMode The camera is not configured for IEEE 1394 storage.

kP1CaptureCoreError_MacCreateLocalIsochPortError Mac OS only. Could not create local isochronous port. There is insufficient memory below the 2GB memory

boundary for the operating system to setup an isochronous FireWire transfer port between the host and the

device.

134

6 Capability Reference

The following tables list the defined capabilities for each class that supports them. The tables list the typical value type for each capability,

however, capabilities are not required to be of this value type. An application should be prepared to handle any value type for each capability, or

at the very least ignore gracefully a capability with a value type different than expected. A string value can always be retrieved for each

capability, regardless of the actual value type.

6.1 ICamera (P1CaptureCore_Camera)

Capability
Typical

Value Type
Description

General (EnumCameraCapabilityId)

kCameraCapability_Capture Bool

If true, general capturing functionality is supported, such as StartCapture, StopCapture,

PauseCapture, GetNextCaptureImage, GetCaptureImageQueue, and MaxCaptureQueueSize

methods.

kCameraCapability_PauseCapture Bool If true, the PauseCapture method is supported.

kCameraCapability_PauseCaptureAndTransfer Bool
If true, the bPauseTransfer parameter of PauseCapture method is supported, allowing it to pause

the transfer of images in addition to pausing their capture.

kCameraCapability_WaitOnPending Bool
If true, the bWaitOnPending parameter of the StopCapture method is supported, allowing it to

optionally wait on pending images before stopping capture.

kCameraCapability_PendingImageCount Bool If true, the PendingImageCount method is supported.

kCameraCapability_ShutterRelease Bool If true, the ShutterRelease method is supported.

kCameraCapability_MaxCaptureQueueSize Bool If true, the maximum capture queue size can be set via the MaxCaptureQueueSize methods.

kCameraCapability_RestoreDefault Bool If true, the RestoreDefault method is supported.

kCameraCapability_LiveView Bool If true, this device supports Live View functionality.

Phase One device specific (EnumPhaseOneCameraCapabilityId)

kP1CameraCapability_ColorRGB Bool If true, this is a RGB color device.

kP1CameraCapability_ColorBW Bool If true, this is a monochrome color device.

135

6.2 ICaptureImage (P1CaptureCore_CaptureImage)

Capability Typical Value Type Description

General (EnumCaptureImageCapabilityId)

kCaptureImageCapability_Thumbnail Bool If true, the GetThumbnail method is supported.

136

7 Property Reference

The following tables list the defined properties for each class that supports them. The tables list the typical value type for each property,

however, properties are not required to be of this value type. An application should be prepared to handle any value type for each property, or at

the very least ignore gracefully a property with a value type different than expected. A string value can always be retrieved for each property,

regardless of the actual value type.

The tables also list the typical access an application has to each property, read-only or read/write. A property may be read-only on one device,

read/write on another, or not even present. The application should be prepared to handle missing properties or properties with a different access

than expected.

7.1 ICaptureProvider (P1CaptureCore_CaptureProvider)

Property Typical Value Type Typical Access Description

General (EnumCaptureProviderPropertyId)

kCaptureProviderProperty_ManufacturerName String Read Manufacturer’s name.

137

7.2 ICamera (P1CaptureCore_Camera)

Property
Typical

Value Type

Typical

Access
Description

General (EnumCameraPropertyId)

kCameraProperty_ManufacturerName String Read Manufacturer’s name.

kCameraProperty_Model String/Enum Read Device model.

kCameraProperty_SerialNumber String/Number Read Serial number.

kCameraProperty_FirmwareVersion String/Number Read Firmware version.

kCameraProperty_Description String Read Description of the device.

kCameraProperty_Type Enum Read The type of camera device. See EnumCameraType.

kCameraProperty_MaxTransferSpeed UInt64 Read Maximum transfer speed in bytes per second.

kCameraProperty_NumberOfImagesTaken UInt32 Read Current number of images taken by the device.

kCameraProperty_BatteryStatus Float64 Read Current charge level of the device battery.

kCameraProperty_BatteryChargingStatus Bool Read Charging status of the device battery. True if currently charging.

kCameraProperty_HostMaxCaptureQueueSize UInt32 Read/Write
The maximum number of images to queue on the host. Same as

MaxCaptureQueueSize methods.

kCameraProperty_HostStorageCapacity UInt64 Read/Write Number of available bytes on the host for storing images.

kCameraProperty_ImageSize String/Enum Read/Write The size of an image (e.g. large, medium, small). Related to resolution.

kCameraProperty_ImageArea String/Enum Read/Write The physical area on the sensor to acquire images with.

kCameraProperty_WhiteBalanceMode String/Enum Read/Write The white balance mode to use during capture (e.g. Auto, Flash, Daylight, etc.)

kCameraProperty_WhiteBalance ColorRGBFloat Read
The current white balance value in the current white balance mode. May be

undefined for non-custom modes.

kCameraProperty_WhiteBalanceCustom1 ColorRGBFloat Read/Write The white balance value for the Custom 1 white balance mode.

kCameraProperty_WhiteBalanceCustom2 ColorRGBFloat Read/Write The white balance value for the Custom 2 white balance mode.

kCameraProperty_WhiteBalanceCustom3 ColorRGBFloat Read/Write The white balance value for the Custom 3 white balance mode.

kCameraProperty_FileFormat Enum Read/Write The file format of captured images.

kCameraProperty_ImageCompression Enum Read/Write Image compression setting (e.g. IIQ L or IIQ S).

kCameraProperty_ImageMaximumSize UInt32 Read Maximum size in bytes of an image for this device (worst case).

kCameraProperty_ImageTypicalSize UInt32 Read Typical size in bytes of an image for the current settings.

138

Property
Typical

Value Type

Typical

Access
Description

kCameraProperty_ThumbnailMaxDimension UInt32 Read/Write
The default maximum dimension in pixels of generated and embedded thumbnail

images in captured images.

kCameraProperty_ExposureISO UInt32/Enum Read/Write Exposure ISO (e.g. ISO 100).

kCameraProperty_ShutterSpeed Float64/Enum Read/Write Shutter speed in seconds (e.g. 1.4 s or 1/125 s).

kCameraProperty_Aperture Float64/Enum Read/Write Aperture value in f-stops (e.g. f/22).

kCameraProperty_ExposureBias Float64/Enum Read/Write Exposure bias in exposure steps (e.g. -1.5 or 3.0).

kCameraProperty_ExposureMode Enum Read/Write Exposure mode (e.g. Auto, Manual, Auto bracket).

kCameraProperty_ExposureStep Enum Read/Write

Exposure step setting for kCameraProperty_ExposureProgram,

kCameraProperty_Aperture, and kCameraProperty_ExposureBias properties (e.g. 1,

1/2, or 1/3).

kCameraProperty_ExposureProgram Enum Read/Write Exposure program (e.g. P, Av, Tv or M).

kCameraProperty_ExposureMeteringMode Enum Read/Write Exposure metering mode.

kCameraProperty_ExposureMeterValue Float64 Read Exposure meter value.

kCameraProperty_CameraOrientationMode Enum Read/Write

Allows specification of the camera orientation (Auto, 0, 90, 180, 270). In Auto mode

(the default), the camera orientation is determined by a rotation sensor in the device.

The image orientation is determined by both the source orientation and the camera

orientation. See EnumCameraOrientationMode.

kCameraProperty_FlashMode Enum Read/Write Flash mode.

kCameraProperty_MirrorUp Bool Read/Write Mirror up.

kCameraProperty_AutoFocusMode Enum Read/Write Auto-focus mode.

kCameraProperty_DriveMode Enum Read/Write Drive mode.

kCameraProperty_ShutterMode Enum Read/Write Shutter mode.

kCameraProperty_FocusAdjustDiscrete Enum Read/Write

Allows the focus to be adjusted in discrete steps defined by an enumeration. This

property only adjusts the focus it does not set it to a specific absolute value. When

this property is read the adjustment value is always zero. When this property is set

the focus is adjusted by the adjustment value associated with the enumeration.

kCameraProperty_FocusAdjustContinuous Int32 Read/Write

Allows the focus to be adjusted by any value. This property only adjusts the focus it

does not set it to a specific absolute value. When this property is read the adjustment

value is always zero. When this property is set the focus is adjusted by the set value.

kCameraProperty_BodyManufacturer String Read On digital back camera systems, the manufacturer of the attached camera body.

139

Property
Typical

Value Type

Typical

Access
Description

kCameraProperty_BodyModel String Read On digital back camera systems, the model of the attached camera body.

kCameraProperty_BodySerialNumber String Read On digital back camera systems, the serial number of the attached camera body.

kCameraProperty_BodyFirmwareVersion String Read On digital back camera systems, the firmware version of the attached camera body.

kCameraProperty_LensManufacturer String Read The manufacturer of the attached lens.

kCameraProperty_LensModel String Read Model of the attached lens.

kCameraProperty_LensSerialNumber String Read Serial number of the attached lens.

kCameraProperty_LensFirmwareVersion String Read Firmware version of the attached lens.

kCameraProperty_LensFocalLength Float64 Read Focal length of the attached lens.

kCameraProperty_Language Enum Read/Write Language displayed on the device.

kCameraProperty_RemoteLanguage Enum Read/Write Language used for properties for this device.

kCameraProperty_DateTime UInt32 Read/Write Current date/time, in seconds since January 1st, 1970 0:00.

kCameraProperty_DisplayBrightness Float64 Read/Write Display brightness setting.

kCameraProperty_DisplaySleep Enum Read/Write Display sleep setting.

kCameraProperty_DeviceSleep Enum Read/Write Device sleep setting.

Phase One device specific (EnumPhaseOneCameraPropertyId)

kP1CameraProperty_MainCodeVersion String Read Main code (firmware) version.

kP1CameraProperty_BootCodeVersion String Read Boot code version.

kP1CameraProperty_FPGACodeVersion String Read FPGA code version.

kP1CameraProperty_CPLDCodeVersion String Read CPLD code version.

kP1CameraProperty_PAVRCodeVersion String Read PAVR code version.

kP1CameraProperty_UAVRCodeVersion String Read UAVR code version.

kP1CameraProperty_TGENCodeVersion String Read TGEN code version.

kP1CameraProperty_HardwareConfig UInt32 Read Hardware configuration value.

kP1CameraProperty_SensorType Enum Read Sensor type.

kP1CameraProperty_SensorBaseISO UInt32 Read Lowest ISO value.

kP1CameraProperty_SensorTemperature Float64 Read The current sensor temperature in degrees Celsius.

kP1CameraProperty_SensorCalibrated Bool Read True if the sensor is calibrated.

kP1CameraProperty_SensorCalibrationDateTime UInt32 Read The date/time the sensor was calibrated, in seconds since January 1st, 1970 0:00.

140

Property
Typical

Value Type

Typical

Access
Description

kP1CameraProperty_SensorArea Area Read Dimensions of the sensor in pixels.

kP1CameraProperty_SensorActiveRect Rect Read
Active rectangle on the sensor in pixels. The active rectangle is the region on the

sensor where it is exposed to light.

kP1CameraProperty_SensorOrientation Int32 Read
Orientation of the sensor relative to the device in degrees (0, 90, 180, 270). The angle

is measured clockwise (to the right) from vertical.

kP1CameraProperty_SensorWidth UInt32 Read Obsolete: use kP1CameraProperty_SensorArea.

kP1CameraProperty_SensorHeight UInt32 Read Obsolete: use kP1CameraProperty_SensorArea.

kP1CameraProperty_SensorActiveWidth UInt32 Read Obsolete: use kP1CameraProperty_SensorActiveRect.

kP1CameraProperty_SensorActiveHeight UInt32 Read Obsolete: use kP1CameraProperty_SensorActiveRect.

kP1CameraProperty_SensorActiveXOffset UInt32 Read Obsolete: use kP1CameraProperty_SensorActiveRect.

kP1CameraProperty_SensorActiveYOffset UInt32 Read Obsolete: use kP1CameraProperty_SensorActiveRect.

kP1CameraProperty_SourceArea Area Read

Dimensions of the image source in pixels. The image source represents the effective

capture area of the sensor in the current device mode. For example, if sub-sampling is

enabled, the image source is reduced compared to the sensor.

kP1CameraProperty_SourceActiveRect Rect Read
The active rectangle on the image source in pixels. The active rectangle is the region

on the image source where it is exposed to light.

kP1CameraProperty_SourceOrientation Int32 Read
Orientation of the image source relative to the device in degrees (0, 90, 180, 270).

The angle is measured clockwise (to the right) from vertical.

kP1CameraProperty_SourceWidth UInt32 Read Obsolete: use kP1CameraProperty_SourceArea.

kP1CameraProperty_SourceHeight UInt32 Read Obsolete: use kP1CameraProperty_SourceArea.

kP1CameraProperty_SourceActiveWidth UInt32 Read Obsolete: use kP1CameraProperty_SourceActiveRect.

kP1CameraProperty_SourceActiveHeight UInt32 Read Obsolete: use kP1CameraProperty_SourceActiveRect.

kP1CameraProperty_SourceActiveXOffset UInt32 Read Obsolete: use kP1CameraProperty_SourceActiveRect.

kP1CameraProperty_SourceActiveYOffset UInt32 Read Obsolete: use kP1CameraProperty_SourceActiveRect.

kP1CameraProperty_ManufacturerId UIn32 Read A number identifying the device manufacturer.

kP1CameraProperty_ModelId UIn32 Read A number identifying the device model.

kP1CameraProperty_MountId UIn32 Read A number identifying the mount interface of a digital back.

kP1CameraProperty_MountInterface String Read A string identifying the mount interface of a digital back.

kP1CameraProperty_ShutterCounterFocalPlane UInt32 Read The cycle count of the camera body focal plane shutter, if present.

141

Property
Typical

Value Type

Typical

Access
Description

kP1CameraProperty_ShutterCounterLeaf UInt32 Read The cycle count of the lens leaf shutter, if present.

kP1CameraProperty_ApertureCounter UInt32 Read The cycle count of the lens aperture.

kP1CameraProperty_MirrorWinderCounter UInt32 Read The cycle count of the camera body mirror and winder mechanism.

kP1CameraProperty_WhiteBalanceRed Float64 Read/Write Obsolete: use kCameraProperty_WhiteBalance.

kP1CameraProperty_WhiteBalanceGreen Float64 Read/Write Obsolete: use kCameraProperty_WhiteBalance.

kP1CameraProperty_WhiteBalanceBlue Float64 Read/Write Obsolete: use kCameraProperty_WhiteBalance.

kP1CameraProperty_CameraOrientationMode Enum Read/Write Obsolete. Use kCameraProperty_CameraOrientationMode.

kP1CameraProperty_SensorPlus Enum Read/Write Sensor+ mode.

kP1CameraProperty_DisableBlackUpdate Bool Read/Write

Disables updating of the black calibration. To improve image quality, a black

calibration image is sometimes captured following a normal capture. If this property

is set to true, the camera will not update the black calibration, which will increase the

sustained capture rate, but there is a risk of reduced image quality.

kP1CameraProperty_BlackCalibrationMode Enum Read/Write

Controls generation of black calibration. Black calibration can be suppressed, forced,

or set to auto (default). To improve image quality, a black calibration image is

sometimes captured following a normal capture. If this property is set to suppressed,

the camera will not update the black calibration, which will increase the sustained

capture rate, but there is a risk of reduced image quality. If this property is set to

forced, the black calibration will be updated for every capture. The default is to let

the back decide when a black calibration is necessary.

kP1CameraProperty_UseRemoteCaptureSettings Bool Read/Write

Controls whether the values of the camera control properties

(kCameraProperty_ExposureProgram, kCameraProperty_Aperture,

kCameraProperty_ExposureBias, and kCameraProperty_ExposureStep) or the

current settings on the camera are used for remote captures. Remote captures are

those made via a ShutterRelease call and not via the camera. Set to true to use the

camera control properties.

kP1CameraProperty_SafeMirrorUp Bool Read/Write

If true, enables safe mirror up mode, which delays some of the internal timing of the

“mirror up” functionality, and is necessary for proper functioning in some situations.

Primarily for H 20 models.

kP1CameraProperty_PowerMode Enum Read/Write Power mode setting of the device (e.g. normal, low or ultra low).

kP1CameraProperty_ShutterLatency Enum Read/Write Shutter latency setting of the device (e.g. long/normal or short/zero).

kP1CameraProperty_BatteryChargeMode Enum Read/Write Battery charging mode.

142

Property
Typical

Value Type

Typical

Access
Description

kP1CameraProperty_AutoPreviewMode Enum Read/Write Auto-preview mode

kP1CameraProperty_ReadyBeep Enum Read/Write Ready beep setting.

kP1CameraProperty_CameraMode Enum Read/Write Camera mode.

kP1CameraProperty_StorageMode Enum Read/Write Storage mode.

kP1CameraProperty_FmcMode Enum Read/Write Forward motion compensation mode setting. For aerial industrial devices only.

kP1CameraProperty_FmcSpeed Float64 Read/Write
Ground speed in knots for forward motion compensation system. For aerial industrial

devices only.

kP1CameraProperty_FmcGsd Float64 Read/Write
Ground sampling distance in cm for forward motion compensation system. For aerial

industrial devices only.

kP1CameraProperty_GpsEnable Bool Read/Write GPS control.

kP1CameraProperty_GpsReceiver Enum Read/Write GPS receiver (e.g. NMEA device, NovAtel device, Applanix device, Internal, etc.)

143

7.3 ICaptureImage (P1CaptureCore_CaptureImage)

Property
Typical

Value Type

Typical

Access
Description

General (EnumCaptureImagePropertyId)

kCaptureImageProperty_ManufacturerName String Read Manufacturer’s name.

kCaptureImageProperty_Model String/Enum Read Device model.

kCaptureImageProperty_SerialNumber String/Number Read Serial number.

kCaptureImageProperty_FirmwareVersion String/Number Read Firmware version.

kCaptureImageProperty_DeviceDescription String Read Description of the device.

kCaptureImageProperty_SoftwareDescription String Read Description of the software used to capture the image.

kCaptureImageProperty_PlatformDescription String Read Description of the host platform the image was captured on.

kCaptureImageProperty_Dimensions Area Read The dimensions (width/height) of the image in pixels.

kCaptureImageProperty_ActiveRect Rect Read
The active rectangle of the image in pixels. The active rectangle is the region

within the image where the image was exposed to light.

kCaptureImageProperty_ImageOrientation Int32 Read Orientation of the image relative to the device in degrees (0, 90, 180, 270).

kCaptureImageProperty_Width UInt32 Read Obsolete: use kCaptureImageProperty_Dimensions.

kCaptureImageProperty_Height UInt32 Read Obsolete: use kCaptureImageProperty_Dimensions.

kCaptureImageProperty_ActiveWidth UInt32 Read Obsolete: use kCaptureImageProperty_ActiveRect.

kCaptureImageProperty_ActiveHeight UInt32 Read Obsolete: use kCaptureImageProperty_ActiveRect.

kCaptureImageProperty_ActiveXOffset UInt32 Read Obsolete: use kCaptureImageProperty_ActiveRect.

kCaptureImageProperty_ActiveYOffset UInt32 Read Obsolete: use kCaptureImageProperty_ActiveRect.

kCaptureImageProperty_WhiteBalanceMode Enum Read The active white balance mode when the image was captured.

kCaptureImageProperty_WhiteBalance ColorRGBFloat Read
White balance. Usually this is three floating point numbers representing the

relative mixture of red, green and blue.

kCaptureImageProperty_FileFormat Enum Read Image file format.

kCaptureImageProperty_ImageCompression Enum Read Image compression setting (e.g. IIQ L or IIQ S).

kCaptureImageProperty_ImageSize String/Enum Read Size of the image as a setting (e.g. large, medium, small).

kCaptureImageProperty_FileSize UInt32 Read Size of the image in bytes.

144

Property
Typical

Value Type

Typical

Access
Description

kCaptureImageProperty_ThumbnailMaxDimension UInt32 Read
The maximum dimension of generated and embedded thumbnail images. Note:

might be read-only. See also kCameraProperty_ThumbnailMaxDimension.

kCaptureImageProperty_ThumbnailDimensions Area Read The dimensions (width/height) in pixels of the embedded thumbnail image

kCaptureImageProperty_ThumbnailWidth UInt32 Read Obsolete: use kCaptureImageProperty_ThumbnailDimensions.

kCaptureImageProperty_ThumbnailHeight UInt32 Read Obsolete: use kCaptureImageProperty_ThumbnailDimensions.

kCaptureImageProperty_ThumbnailSize UInt32 Read The size in bytes of the embedded thumbnail image.

kCaptureImageProperty_DefaultFilenameExtension String Read Default file name extension (e.g. iiq or tif).

kCaptureImageProperty_ExposureISO UInt32/Enum Read Exposure ISO (e.g. ISO 100).

kCaptureImageProperty_ShutterSpeed Float64/Enum Read Shutter speed in seconds (e.g. 1.4 s or 1/125 s).

kCaptureImageProperty_ShutterSpeedApexValue Float64 Read Shutter speed as APEX value: Log2(1 / speed)

kCaptureImageProperty_Aperture Float64/Enum Read Aperture value in f-stops (e.g. f/22).

kCaptureImageProperty_ApertureApexValue Float64 Read Aperture as APEX value: Log2(aperture^2)

kCaptureImageProperty_ExposureBias Float64 Read Exposure bias in exposure steps (e.g. -1.5 or 3.0).

kCaptureImageProperty_ExposureMode Enum Read Exposure mode (e.g. Auto, Manual, Auto bracket).

kCaptureImageProperty_ExposureProgram Enum Read Exposure program (e.g. P, Av, Tv or M).

kCaptureImageProperty_CameraOrientationMode Enum Read

The camera orientation mode at the time of capture (Auto, 0, 90, 180, 270). In

Auto mode (the default), the camera orientation was determined by a rotation

sensor in the device. The final image orientation is determined by both the source

orientation and the camera orientation. See EnumCameraOrientationMode.

kCaptureImageProperty_FocalLength Float64 Read Focal length in mm.

kCaptureImageProperty_Timestamp UInt64 Read Timestamp for this image, in seconds since January 1st, 1970 0:00.

kCaptureImageProperty_CameraCaptureNumber UInt32 Read Capture number for this image set by the device.

kCaptureImageProperty_SoftwareCaptureNumber UInt32 Read CaptureCore generated capture number for this image.

kCaptureImageProperty_CameraAngle Float64 Read

Device angle in degrees at the time the image was captured. The angle is

measured clockwise (to the right) from vertical. For example, rotating the device

to left will result in a camera angle of 270.0 or -90.0 degrees.

kCaptureImageProperty_GpsLatitude Float64 Read GPS latitude in signed degrees.

kCaptureImageProperty_GpsLongitude Float64 Read GPS longitude in signed degrees.

kCaptureImageProperty_GpsAltitude Float64 Read GPS altitude in signed meters.

145

Property
Typical

Value Type

Typical

Access
Description

kCaptureImageProperty_GpsTimeStampUTC UInt64 Read
GPS time stamp for this image, in milliseconds since January 1st, 1970 0:00,

UTC timescale.

kCaptureImageProperty_GpsTimeWeekNumber UInt32 Read
GPS time for this image in weeks since Jan 6th 1980, timescale according to

value of the kCaptureImageProperty_GpsTimescale property.

kCaptureImageProperty_GpsTimeSecondsOfWeek Float64 Read
GPS time for this image in seconds into the week, timescale according to value of

the kCaptureImageProperty_GpsTimescale property.

kCaptureImageProperty_GpsTimescale Enum Read GPS time timescale (e.g. UTC or GPS).

kCaptureImageProperty_GpsUtcOffset Int32 Read Difference between the GPS time and UTC (leap seconds).

kCaptureImageProperty_GpsMarkInputEventID UInt32 Read
GPS input event id. The GPS event id is used to synchronize images to a log of

the GPS device at a later point in time.

Phase One device specific (EnumPhaseOneCaptureImagePropertyId)

kP1CaptureImageProperty_HardwareConfig UInt32 Read A device specific hardware configuration value.

kP1CaptureImageProperty_SensorType Enum Read Sensor type.

kP1CaptureImageProperty_SensorBaseISO UInt32 Read Lowest ISO value.

kP1CaptureImageProperty_SensorTemperature Float64 Read The sensor temperature during image capture in degrees Celsius.

kP1CaptureImageProperty_SensorArea Area Read Dimensions of the sensor in pixels.

kP1CaptureImageProperty_SensorActiveRect Rect Read
Active rectangle on the sensor in pixels. The active rectangle is the region on the

sensor where it is exposed to light.

kP1CaptureImageProperty_SensorOrientation Int32 Read
Orientation of the sensor relative to the device in degrees (0, 90, 180, 270). The

angle is measured clockwise (to the right) from vertical.

kP1CaptureImageProperty_SensorWidth UInt32 Read Obsolete: use kP1CaptureImageProperty_SensorArea.

kP1CaptureImageProperty_SensorHeight UInt32 Read Obsolete: use kP1CaptureImageProperty_SensorArea.

kP1CaptureImageProperty_SensorActiveWidth UInt32 Read Obsolete: use kP1CaptureImageProperty_SensorActiveRect.

kP1CaptureImageProperty_SensorActiveHeight UInt32 Read Obsolete: use kP1CaptureImageProperty_SensorActiveRect.

kP1CaptureImageProperty_SensorActiveXOffset UInt32 Read Obsolete: use kP1CaptureImageProperty_SensorActiveRect.

kP1CaptureImageProperty_SensorActiveYOffset UInt32 Read Obsolete: use kP1CaptureImageProperty_SensorActiveRect.

kP1CaptureImageProperty_SourceArea Area Read

Dimensions of the image source in pixels. The image source represents the

effective capture area of the sensor in the current device mode. For example, if

sub-sampling is enabled, the image source is reduced compared to the sensor.

146

Property
Typical

Value Type

Typical

Access
Description

kP1CaptureImageProperty_SourceActiveRect Rect Read
The active rectangle on the image source in pixels. The active rectangle is the

region on the image source where it is exposed to light.

kP1CaptureImageProperty_SourceOrientation Int32 Read
Orientation of the image source relative to the device in degrees (0, 90, 180, 270).

The angle is measured clockwise (to the right) from vertical.

kP1CaptureImageProperty_SourceWidth UInt32 Read Obsolete: use kP1CaptureImageProperty_SourceArea.

kP1CaptureImageProperty_SourceHeight UInt32 Read Obsolete: use kP1CaptureImageProperty_SourceArea.

kP1CaptureImageProperty_SourceActiveWidth UInt32 Read Obsolete: use kP1CaptureImageProperty_SourceActiveRect.

kP1CaptureImageProperty_SourceActiveHeight UInt32 Read Obsolete: use kP1CaptureImageProperty_SourceActiveRect.

kP1CaptureImageProperty_SourceActiveXOffset UInt32 Read Obsolete: use kP1CaptureImageProperty_SourceActiveRect.

kP1CaptureImageProperty_SourceActiveYOffset UInt32 Read Obsolete: use kP1CaptureImageProperty_SourceActiveRect.

kP1CaptureImageProperty_WhiteBalanceRed Float64 Read Obsolete: use kCaptureImageProperty_WhiteBalance.

kP1CaptureImageProperty_WhiteBalanceGreen Float64 Read Obsolete: use kCaptureImageProperty_WhiteBalance.

kP1CaptureImageProperty_WhiteBalanceBlue Float64 Read Obsolete: use kCaptureImageProperty_WhiteBalance.

kP1CaptureImageProperty_CameraOrientationMode Enum Read Obsolete. use kCaptureImageProperty_CameraOrientationMode.

kP1CaptureImageProperty_SensorPlus Enum Read The Sensor+ mode the image was captured in.

kP1CaptureImageProperty_IntegrationTime UInt32 Read The time in milliseconds that the sensor was active during image capture.

kP1CaptureImageProperty_WhiteBalanceMode Enum Read Obsolete: use kCaptureImageProperty_WhiteBalanceMode.

kP1CaptureImageProperty_HardwareGain UInt32 Read Phase One specific hardware gain.

kP1CaptureImageProperty_SoftwareGain UInt32 Read Phase One specific software gain.

kP1CaptureImageProperty_PreCompressionGain UInt32 Read Phase One specific pre-compression gain.

kP1CaptureImageProperty_ProcessingFlags UInt32 Read Phase One specific flags.

kP1CaptureImageProperty_BlackIntegrationTime UInt32 Read The time in milliseconds that the sensor was active during black calibration.

kP1CaptureImageProperty_BlackTemperature Float64 Read The sensor temperature during the black calibration in degrees Celsius.

kP1CaptureImageProperty_BlackTimeStamp UInt64 Read Timestamp for the black calibration, in seconds since January 1st, 1970 0:00.

kP1CaptureImageProperty_FmcMode Enum Read Forward motion compensation mode. For aerial industrial devices only.

kP1CaptureImageProperty_FmcSpeed Float64 Read
Ground speed in knots for forward motion compensation system. For aerial

industrial devices only.

147

Property
Typical

Value Type

Typical

Access
Description

kP1CaptureImageProperty_FmcGsd Float64 Read
Ground sampling distance in cm for forward motion compensation system. For

aerial industrial devices only.

kP1CaptureImageProperty_FmcVerticalShift UInt32 Read
Number of vertical shifts in lines performed by forward motion compensation

system. For aerial industrial devices only.

