2013-10-10

Phase One
CaptureCore
SDK

7.2.3

Interface Revision 3

version 7.1.5

PHASEONE

1

INEFOAUCTION ... b e E bR R bt n et n bt r et n e n s 1
I R I =TS To g IO =T o] SR 1
0T oo Yo l =0 AV T 0T T 10) RSP 1
1.3 SUPPOITEA DEVICES.eeeeieiteieeteiteit ettt ettt ettt e et eb bbbt eb e b bt s bt eb e b e ekt nb e e eb e nb e e ebenb e ane e 1
ST B] (G 0] o1 1=] 11 £ TSP P PRRPRPP 2
1.5 Sample APPIICATIONS ...c..oiiiiiiciitiie ettt bbbt et b bbb nr bt e re e 2

151 SIMPIECAPTUIE. ...ttt b e et b bbb bbbttt b nn e 2

OVBIVIBW ...ttt ettt ekttt se s et e e e ee e bt s b e e et a8 e em e e st e ee e e b e e EeeE £ e bt em e e s b e b e beebeebeebeemeeeebenbesbeebeareeneas 3
2.1 INAIMESPACES ... vttt ettt r ekt b bt h bt E e b e eh R R R R bR Rt R Rt nr e r e ne s 3
W O o) (=Yoo [T 1)Y/ OSSPSR 3
p T O - T3 1T T o]0 OSSR 4
2.4 REErENCE COUNTINGiviitiieitieeei ettt e sttt e st et e et e te st e s besaeeseeseess e eeseesbesteeneeneenseseeseesrenneanens 5
2.5 MuUltithread APPIICALIONS.civiieiie s s e e et e s e e s testeene e e et e sbesresreaneaneas 5
2.6 Errors, EXceptions and RELUIN ValUES..........c.ciuiiiiieiiiiiesieieesie ettt ee sttt sesna e e e saesrestesneeneas 6
2.7 ValUE ClaSSES ANU TYPES . .eevieiierieiiiesieesee st esteeste st e st e steesteeste e teasteaseesseesteesaeesseesseenseaneeansesseeseeesraeeenseens 6
2.8 CAPADIIITIES. ...ttt bbb bbbttt bbb et 7
2.9 PIOPEITIES. ...ttt ettt b bbb R h b bR R R R e R bR bR e bt bbb et 7
2.10 T T TP P PP P PP PUPRRPPPOTRRPPN 8
2.11 PIOGIESS ..o e 9
2.12 Log File and Cache FOIUETcoiiiiiiiiiese ettt 10
2.13 Generality and Future ComMPAatiDIlitycooviiiiiiie e 10
2.14 Development Environment DIffEreNCEScviivi i 11

2.14.1 L OSSOSO 11

2.14.2 (@]] [OOSR 11

L] (=] =] 1o TSP PP PP PT PR 12
K R €1 (O o] (1] 1100} T PP PPRPR 12
3.2 ICaptureCore (P1CaptureCore_CaptUrBCOrE)........ccereeiteriereiterieieete s iesie ettt are e ebe bt sreeere e 13

3.21 RV 53 o] SRS PPRPR 13

3.2.2 L (CA 11T o S 14

3.2.3 I 00T LSS SPTRS 14

3.24 GEtCAPIUIEPTOVIAEILISEc.vvieieietirteei ettt b 15

3.2.5 LOGMSGFIIENEME (GEL/SEL).....eiviieieitiiieiecte ettt 15

3.2.6 CacheFolderName (GEL/SEL)ccviiieeeeee et sre e sre e 16

3.2.7 GEtMIlTISECONACOUNT ...ttt ettt 16

3.2.8 Lol OIS} (1o SRR 17

3.2.9 IS [0 o] o S SS 17
3.3 ICaptureProviderList (P1CaptureCore_CaptureProviderLiSt)cccccoviveiiiiiiiieiieie e 19
3.4 ICaptureProvider (P1CaptureCore_CapturePrOVIAEr)ccccoeiieieeiiece et 20

341 ISAVAIADIE ...ttt e ne e ene s 21

3.4.2 (€= (O 10T o) PSP 22

343 LC TS (1oL - USSP 22

3.4.4 kCaptureProviderEvent_CameraAddedcooiiriiiieniee e 22

3.4.5 kCaptureProviderEvent_CameraREMOVEDcocoireiiiiiiiiieere e 23
3.5 1CameraList (P1CaptureCore_CameraliiSt)ccccuiiaiireieiere st e 24

351 (€12 (0110 =T - H T T OO U TR P PR OPTUPTP 24
3.6 1Camera (PLCAPIUrECOrE _CAMEIA).. .. cuereteieeitesieaieeteeeestestestesbesbeese et esee st e sbesbesbesbesseese et e sbeseesbeseeeneenes 26

3.6.1 ISAVAIIADIE ... e bbb e 29

3.6.2 L@ o =T o F T T OO P RO P PO PTUPPTPPT 29

3.6.3 (O 0= TSRS P U PRPRO 30

3.6.4 LSO .t E Rt R Rttt r e neene s 30

3.6.5 ST @0] 1 0 1-Tod =T 1RSSR 31

3.6.6 SEAMTCAPTUIE ... bbb bbbt bttt r e r e 31

3.6.7 PAUSECAPIUIE. ...ttt bbbt bbbt bt r e r e 32

3.6.8 (0] 1021 o] (1T TSP PSSP PP PRPRPI 32

3.6.9 LSO o 1 (1 T a T OO OO SO SOTRSTR TSR 33

3.6.10 ISCAPLUMINGPAUSEXccueeeeiieitisieeie ettt bbb bbbt bt e b et e b sbesbesaeeneas 34

3.6.11 PendiNgIMAgECOUNTottt ettt bbbt bt b e e et b e be b sneens 34

3.6.12 SNULEEIREIBASE. ...t bbb b bbb 35

3.6.13 GetNEXICAPTUIEIMAGE ... ettt ettt b e e be e see e nne e e 35

3.6.14 GetCapturelMAagEQUEUR..........oouiiiei ettt bttt ettt ettt b et se e beesbe e saeenbeeeas 36

PHASEONE

3.6.15 MaxCaptureQUEUESIZE (GEUSEL)vivieeeeieieiese et e et ae e re e eneas 36
3.6.16 RESLOTEDETAUILvec s 37
3.6.17 kCameraEvent_CameraDiSCONNECIEAecviieiierieriese e e ettt eneens 38
3.6.18 kCameraEvent_IMageRECEIVETccoviiiiiiiiicee s 38
3.6.19 kCameraEvent_PendinglmageCoUNtChaNGEeccurerieiririiiniieisieee s 38
3.6.20 kCameraEvent_CapturingSTArted............ccureriiirieieireieisteeee et 38
3.6.21 kCameraEvent_CapturingStOPPEUccoiriiiiiiriiiiirieieiste st 38
3.7 ICapturelmageList (P1CaptureCore_CapturelMageLiSt)ccoeiveireiiiireieiireisie e 39
3.7.1 GetCAPUIEIIMAGE ...ttt r e 39
3.8 ICapturelmage (P1CaptureCore_CapturelMage)c.cccerveruerrerieriesieseeieseeseestesrestesesseeeesee e sressesseaseenes 41
381 ClOSE .t n Rt 42
3.8.2 FHIESIZE .. 43
383 SAVETORIIE ...t 43
3.84 SAVETOBUTITE ... 43
3.85 GELIMAGEDALAcvveeiie ettt a e nrre e 44
3.8.6 GEtTRUMBNAIL ...t bbbt 44
3.9 lIlmageData (P1CaptureCore_IMageData)ccovierieieiirieiierie ettt et sre e 46
3.9.1 IMAGETYPE .o e 46
3.9.2 COlOITYPE (GEUSEL) ...ttt bbbt sbe e ne e 47
3.9.3 ISCOIOITYPESUPPOITE ..ottt bbbttt st eb 47
3.94 WWEAEN ettt ettt r s 48
3.95 HEIGNL. .. 48
3.9.6 PIXEICOUNL. ...ttt n e 48
3.9.7 O] g 1<T o1 ro LA 0] TP PP PR TSP 49
3.9.8 LR A 0TI v SR 49
3.9.9 LINESIZE .ot 49
3.9.10 PIXEISIZE ..o 50
3.9.11 LiNePadding (GEI/SEL)......cciieiiirieiiie ettt eb et eb et 50
3.9.12 PIXeIPAAAING (GOU/SEL)....c.ieiiiieiieeeies bbb 51
3.9.13 COPYPIXEIS ..ttt bbb bbb bbbttt b et 51
3.9.14 TOBItMAP [INEL ONIYT ..o 52
3.9.15 tONSIMAGE [ODJC ONIYT ..ot 52
3.10 ICapturelmageThumbnail (P1CaptureCore_CapturelmageThumbnail)............cccccoveviiiiiciicinnen. 53
3.11 ICaptureObject (P1CaptureCore_CaptureODJECt)covveiiiiieiie e 54
3111 Lo ST TSSOSO U PSP PP PTPEUPPRPUPPRPTPTORN 55
3.11.2 LCTC (O T o oL 1] Y7 T P 55
3.11.3 LCTCT (o o] o T=T Y 1) PSS 56
3.11.4 GetCaAPADIIILY ... e 56
3.115 GBEPTOPEITY ..ttt r e 57
3.116 kCaptureObjectEvent_CapabilityChange ..ot 57
3.11.7 kCaptureObjectEvent_ PropertyChange ..ot e 57
3.118 kCaptureObjectEvent_SettingDescriptorChangecccuverririneinieeiseecse e 57
3.119 kCaptureObjectEvent_Property Added. ..o e 58
3.11.10 kCaptureObjectEvent_PropertyRemMOVEdcccooeiiiiiiiiiieieee e e 58
3.11.11 kCaptureObjectEvent_Capability Addedcooiiiiiiiiiie s 58
3.11.12 kCaptureObjectEvent_CapabilityREMOVEccooiiiiiiiiiiiiee s 58
3.12 ICapabilityList (P1CaptureCore_CapabilityLiSt)cccooiiiriririiieiee s 59
3.121 GetCaAPADITILY ... bbb 59
3.12.2 (D110 o T TP O VPP OPTUPTURRUROTN 60
3.13 ICapability (PLCaptureCore_Capability)cccoviireiiiieree e 61
3131 o TP 62
3.13.2 [N =T 0L TP PP PP PR PPN 63
3.13.3 LU T R 63
3.134 UMD e et 64
3.14 IPropertyList (P1CaptureCore_PropertyLiSt)ccoccurereirereieieniee et 65
3.14.1 LCTS] (o 0] o [=] YT OO U RO PO PR OPTUPTPP 65
3.14.2 RESTOTEDETAUIL ... bbb b e bbb 66
3.14.3 RETTESI ..ttt ettt bbbt h et b e b e b enes 66
3.14.4 (D111 o T TR STPTOU O U OPTUPTURTUROPN 67
3.15 IProperty (PLCaptureCOore _PrOPEITY)cc.oiiiiieieieiieieie sttt sttt sttt bbb 68

PHASEONE

3.15.1 Lo OO OSSOSO 70
3.15.2 NBITIE L.ttt e R e n e R R r e 71
3.15.3 L OO OURRRPRT 71
3.154 GEtSEttINGDESCIIPION ...ttt b ettt b ettt sb e ne e 72
3.155 LS B 1= o] L= TR USRP PPN 72
3.15.6 ISDETAUITVAIUE ...ttt r ettt saesbesneeneas 73
3.15.7 RESTOTEDETAUIL ...ttt et ereens 73
3.15.8] =T o SRRSO 73
3.15.9 DUMIP e 74
3.16 ISettingDescriptor (P1CaptureCore_SettingDeSCIIPLOr).......civivieeierieriesese e e 75
3.16.1 R LU 1Y/ o P 76
3.16.2 HASDETAUIL ...ttt bbbt et 76
3.16.3 DEIAUIL ...ttt e 77
3.16.4 HABSRANGE ...t nees 77
3.16.5 RANGEMINIMUIM ..ot et s e e teenaeenseeneesneesteesteenteesreaneeas 77
3.16.6 RANGEMEAXIMUIM ...ttt b bbbt b bbbt b et 78
3.16.7 HASVAIUBLISE. ...ttt sttt e eneen et e e seesbesreeneeres 78
3.16.8 ISVAIUELISESEIECTONIY ...ttt 79
3.16.9 GREVAIUBLISE ...ttt sttt e et et s be et et e ene e e st et neeerenre e 79
3.16.10 ValidAEVAIUE ...ttt b et aeeneere e 79
3.17 ISettingValueList (P1CaptureCore_SettingValUeList)..........ccoevirireiieneiieneese e, 81
3.17.1 RV LU L= I8 < TS 81
3.18 ISettingValue (PLCaptureCore_SettingValUE)ccecovviiiiiieiiee e 83
3.19 IRo0tObject (P1CaptureCore_ROOIODJECT)ccviivieieeiieeie e 85
3.20 IChildObject (P1CaptureCore_ChildODJECT).......ccveiieeiieice e 86
3.20.1 PAIENT ... e r e r et R e r e r e re e reene s 86
3.21 IObjectList (P1CaptureCore_ODJECLLISL)coeiviirieirierieesie et 87
3.21.1 ST TSRS 87
3.21.2 LS EMIDEY e e e 88
3.21.3] SR 88
3.214 [] T TP PR PPP PP PPN 88
3.215 [N L TP PP PPP PPN 88
3.21.6 PIEVIOUS ..ttt bt e bbbt e bbbt bt bbbttt nh b e bt enes 89
3.21.7 [T T OO U PP PP PP OPRPPPTPPT 89
3.21.8 REIMOVE ...t b ettt b e s bt e s bt e bt e n e sb e ab b e s b e e b e e be e b e nnne s 90
3.21.9 (O [| TSR U TR TOUP T PRPROPO 90
3.21.10 GBLACCESS ...ttt ket ettt ettt b ettt st h e b e b e e bt e bt e Rt e R et e R et R e e bt e bt e bR R bR e Re e nre e nreennas 91
3.21.11 HBSACCESS ...ttt bbbttt b e b bt e E e n e bbb bt e b e e be e r e 91
3.22 IValueRead (P1CaptureCore_ValUeREad)ccoreiiiiiiiiieec et 93
3.221 VBIUE T Y .t b e bbb bbb bt bt bbbttt he e b 94
3.22.2 S0 T) 1T =T SRRSO 94
3.22.3 Gt ValUE MELNOUS ...ttt sttt saeseesreereene e 95
3.224 (O00] 0] oL PP ST PP PR PRPRPROY 98
3.23 IValueWrite (P1CaptureCore_ValUBWIILE)ccooeiieieiieie et e 99
3.231 ISREAAONIY ...ttt b e bbbt e ne et e et s besbe b e 100
3.23.2 SEEVAIUE IMEENOAS ...t bbb bbb 101
3.24 IErrorSource (PLCaptureCore_ErTOIrSOUICE)cciiiiieriirieiie ittt 105
3.24.1 (€121 1=l (o] ST TP U O P TSR PRRPROP 105
3.24.2 Y101 o [=] G SRR 105
3.25 IErrorObject (P1CaptureCore_ErrorODJECT)......ccueiveieiiiinieiriesies e 107
3.25.1 I3 L TP PR PR PSPPSR 107
3.25.2 N LU o PSSP 108
3.25.3 TYPENEIMIE ...t s e e nr e e r e et ene e nn e r e re e 108
3.254 [TSl o] (10 PRSP PSPPSR 109
3.255 [=) 7 | SRS 109
3.26 IEventSource (P1CaptureCore_EVENTSOUICE)cuiviieriiriiiiiiiisieeie ettt 110
3.26.1 ALURECEIVET ...ttt bbbttt e b ek bt bt s bt bt e bt e ne e e e st e nbesbeebeere e 110
3.26.2 REMOVERECRIVET ..ottt et bbb b bbb e bt e e et et b sbesneeneas 111
3.27 IEventReceiver (P1CaptureCore_EVENTRECEIVEL)ccuoiiiiiiiiieiieie et 113
3.27.1 ONEVENT ...tttk et a bbb e eb e ekt et e e st e e be e s b e e sbe e ebeebeenneenrenne e e 113

PHASEONE

3.28 IEventObject (P1CaptureCore_EVENTODJECL)cvciveieieiiiiieiesteseeie e eneas 115
3.28.1 o TSSO TSP PP PT PP TUPPT 115
3.28.2 NUMBEIOTAIGUMENES.eieciieece ettt be st reene e e et e besresreaneaneas 115
3.28.3 ATGUIMENT L. r bbb et b bbb s e e e sr e renn e r e 116

3.29 IEventArgument (P1CaptureCore_EVENtATGUMENT)ooveiiiriiiinieisie e 117

3.30 IProgressSource (P1CaptureCore_ProgreSSSOUICE)c.eiererereeriereeriestestestessesseeesseeseeseessessessens 119
3.30.1 GBEP OGIESS ...ttt 119
3.30.2 KEVENTIA_ProgreSSUPTALE.civeiiiirieiitciieiesie ettt 119

3.31 IProgressStatus (PLCaptureCore_ProgreSSStatus)cueoeirerreirenieisiesieesiesieese e 120
3311 o TSSOSO TSP TSP TUPPRP 120
3.31.2 INSEANCE ... 121
3.31.3 [1= o] [OSSR 121
3314 DIBLAIL...c e 122
3.315 UNIE et r s 122
3.31.6 CUITENT L. e e 123
3.317 0o O TSSO S TP ST U PO UPTPRPRUPTPRRPPPRIN 123
3.31.8 PBICEINT .ttt e e b e bt e b e bt ere e nneas 124
3.31.9 EIAPSEA THIME L.ttt ettt b bbbt eb e bt nr e b e 124
3.31.10 ISDIONE ...ttt Rt R e aR R bt nnr e nrr e nare e e 124
3.31.11 LSO T o1=] | =T SO 125
3.31.12 L0 10 [OF: oot TP 125
BBLL3 CANCEI oottt 126

4 ENUMETation RETEIENCE ..ottt r e ane s 127

R = 011140 (] g 1Y/ o1 TSP OPROPRP 127

A a1V NV U TC I o SR 127

4.3 ENUMLISTACCESS ...c.veveieireeeiesre et sr et ar et r et r e bt e r s r st eR e nn e e Rt e r e e r e nr e s e erenr e e e nenr e enennes 128

4.4 ENUMCAPLUIECOIENAIMEc.viiitiiieiieieee ettt er bbbt e nr b b ene s 128

45 ENUMIMAGETYPE ...eoiiiieiiieiiee ittt et sr e r e b nre e ne s 128

4.6 ENUMCOIOITYPE . oitiieteite ettt b et b e bbbt b e s bt eb e sb st eb e s bt eb e sb e st ebesb et et e nr e et nnes 128

4.7 ENUMIMAGEOTIENTALION . .c.viviitiieitiite ettt b et b e bbb bbb e e ebe e 129

4.8 ENUMCAMEIAT YR .. ettt ittt bbbt bbbt bt b e nr bbbt nr e n b er e 129

4.9 ENUMCAMEIARESIONE ... eeiteeiteeiieeee ettt ettt ettt e st e s te e s teeste e bt emeeeseeeseesaeesbeenteesteeneesseesreesaeenneennes 129

4.10 EnumCameraOrientatioNIMOUE............coviiiiiriiiriir et 130

4.11 ENUMFOCUSATJUSIDISCIELEecvvieiieie ettt sttt ettt s e st ste e steeneeenbeeneeenee e 130

412 ENUMEMCIMOTE ...ttt nr et r e e en e e eerennes 130

5 ETTOT RETEIENCE ...ttt ettt b et b e r et r e nr e er e nn e arenn e eneans 132
T R O 1o (1] €1 @0 38 = ¢ o] £ PP PUP VPP SURTOVRPURRTR 132
6 Capability REFEIEINCEvicvi ettt et e e te e s te e steebe et e aaeesaeesteestaeteeneenneens 134
6.1 1Camera (PL1CAPIUrECOrE _CAMEIA)......ccuiuereieriereeierte et st sttt st te sttt sbe e bbbttt bbb et b e b e 134
6.2 ICapturelmage (P1CaptureCore_CapturelMAage)coervirerieerierieerie ettt sttt 135
7 PrOPEITY RETEIENCE ...ttt b e bbbt b e bt eb e bt ebe b e ebenres 136

7.1 ICaptureProvider (P1CaptureCore_CapturePrOVILEr)ccccoviirieiiienieirieree et 136

7.2 1Camera (PLCAPtUrECOre _CAMEIA)......cceiuerueriruerieiertereetestestesesteseerestesee st sbe st ese st e besbe st ebesbe e ebesbe e enesens 137

7.3 ICapturelmage (P1CaptureCore_CapturelMage)cocerueruerieriereriiaeeierie sttt se e e e sbe e eneas 143

PHASEONE

1 Introduction

Welcome to the Phase One CaptureCore SDK. CaptureCore is a software interface for
communication with all Phase One digital backs and cameras. It is specifically for use in the
capturing and transferring of images to a computer connected to a digital back or camera, as
well as the setup and synchronization of device settings. It consists of a set of generalized
object-oriented classes that support the .NET and ObjC development environments on
Microsoft Windows and Apple Mac OS operating systems.

1.1 Design Concepts
CaptureCore is designed to be general, cross-platform, object-oriented, and thread-safe.

The primary design focus for CaptureCore was generalization. CaptureCore provides a
common interface for different models of digital backs and cameras. For the application
developer, this device-independence means that the same code will work with all supported
devices. In addition, CaptureCore has been designed to support a broad range of applications.
To provide this generality without losing functionality, CaptureCore provides methods by
which an application can check if a specific device supports a feature it wishes to use.

CaptureCore is cross-platform, supporting the development of applications on both Microsoft
Windows and Apple Mac OS operating systems. It currently supports all .NET development
environments on Microsoft Windows (C#, Managed C++, Visual Basic, and others), and
supports ObjC development on Apple Mac OS. CaptureCore adheres as much as possible to
the different coding styles for each development environment, while still maintaining a
common interface across platforms.

CaptureCore is object-oriented, making it easy to use in today’s object-oriented development
environments. In addition, reference-counting is used to automate object destruction.

All classes, methods, and properties in CaptureCore are thread-safe. Thus the application
developer is free to use multi-threading without additional code.

It has been challenging and fun to design CaptureCore and we hope that you enjoy using it in
your application.

1.2 Supported Environments

CaptureCore supports all 32-bit and 64-bit versions of Windows XP, Windows Vista,
Windows 7 and Windows 8. It also supports Apple Mac OS 10.7 and later.

1.3 Supported Devices

The following devices are supported.

Manufacturer | Model

iXU150, 1Q280, 1Q260, 1Q260 Achromatic, 1Q250, 1Q180, 1Q160, 1Q160
Phase One Achromatic, 1Q140, P65+, P45+, PA5+ Achromatic

PHASEONE

1.4

SDK Contents

The files included in the SDK are organized in the following folder hierarchy.

-/Doc
-/ Win

T/Bin

| L/Drivers

L/samples
L/Net

L/c#
L/simpleCapture

L/objc

1.5
151

L/SimpleCapture

Documentation files for all platforms.

Microsoft Windows specific files.

e Redistributable binary files that provide CaptureCore
functionality.

e Driver files. Some devices require a driver to be
installed.

e Windows sample applications.

e _Net sample applications

e C# sample applications

e C# simple command-line capture application.

Apple Mac OS specific files.

e Redistributable binary files that provide CaptureCore
functionality.

e Mac OS sample applications.

e ObjC sample applications

e ObjC simple command-line capture application.

Sample Applications

SimpleCapture

The SimpleCapture sample application is a simple command-line capture application. It
demonstrates basic capture functionality, such as enumerating capture devices, plug & play,
capturing images, requesting a remote capture, editing a camera property, and handling of
errors, events and progress status.

PHASEONE

2 Overview

CaptureCore consists of a set of class interfaces representing cameras, images, manufacturers,
capabilities, properties, and so on. These are organized in a class hierarchy and are derived
from common base classes — thus many classes share a common set of methods.

Objects (instances of these class interfaces) are organized in an object hierarchy, where most
objects are owned by a parent object, and can have one or more child objects. Reference-
counting is used to automate object destruction, though in both .NET and ObjC this is
handled for the developer by the development runtime. There is a single instance of a top-
level object (ICaptureCore) at the top of the hierarchy, which is retrieved by a call to the
global method GetCaptureCore.

All method calls (including .Net properties) can throw exceptions in the event of an error
condition, such as an invalid parameter, or a communication error with a capture device. In
addition, background threads which encounter errors can inform the application of the error
via events.

Some objects have attributes called capabilities and properties. A capability describes a
conditional feature that is sometimes available, allowing an application to test if an object has
a specific capability before attempting to use it. Properties are settings and information for
the object. Some properties are read-only, and describe things such as a capture device’s
serial number or model name. Other properties are writeable, such as exposure 1SO, and may
have a setting descriptor object that describes which values or the range that they can be set
to. Properties are designed to be easily presented to the user via common user-interface
controls, such as an edit, drop-down list, or combination control.

Objects can send events to an application defined event receiver, informing of errors,
captured images, removed devices, and so on. Progress status is also given for tasks that can
take some time.

2.1 Namespaces

In development environments that support namespaces (.NET), CaptureCore classes and
enumerations are declared in P1.CaptureCore (P1::CaptureCore).

2.2 Object Hierarchy

Objects in CaptureCore are organized in a object/data hierarchy embodying the ownership
relationship between objects. Most objects are a child of a parent object that owns the child
object. The top-level object of the hierarchy is a single instance of ICaptureCore, which is
returned by calling the global method GetCaptureCore.

This single 1CaptureCore object is the parent of ICaptureProvider objects, which represent a
capture device manufacturer, such as Phase One, or a specific family of devices from a
manufacturer. ICaptureProvider objects are parents to ICamera objects, which represent a
physically connected camera or capture device. ICamera objects are parents to
ICapturelmage objects, which contain a captured image. The entire object hierarchy is shown
below in Figure 1.

PHASEONE

ICaptureCore

- - IPropertyList
ICaDtureProwderLlst]

L IProperty ISettianescriotor]

IgaotureProvider}

ICapabilitvList ISettianaIueList]

ICameraList

L ICapability I1SettingValue

ICamera

:

L IErrorObiect

L

ICapturelmaaeList]

ICapturelmaae

IProaressStatus

i

IEventObiect IEventArqument]

Il

Figure 1: CaptureCore Object Hierarchy

There are three principle CaptureCore objects that an application will interact with:
ICaptureProvider, ICamera, and ICapturelmage, which represent manufacturers, devices,
and images respectively. These three objects share common traits, which they inherit from
ICaptureObject. All three have capabilities and properties, can broadcast events, and support
background error reporting.

ICaptureProvider objects provide the application with a list of attached capture devices
(ICamera objects), and send events when new devices are connected or existing devices are
disconnected. There is an ICaptureProvider object for every device APl supported by
CaptureCore.

The ICamera class is the fundamental class of CaptureCore. ICamera objects allow the
application to interact with attached capture devices, and to control the capture and transfer of
images. They receive and store captured images (ICapturelmage objects), sending an event
whenever a new image is available. Many device settings can also be set via an ICamera
object. There is an ICamera object for every connected capture device supported by
CaptureCore.

ICapturelmage objects encapsulate the images captured by devices and transferred to the
host. They provide access to image properties and image data, which can be saved to a file or
copied to an application buffer. A thumbnail (ICapturelmageThumbnail) can also be
retrieved for some image types.

2.3 Class Hierarchy

CaptureCore objects are instances of CaptureCore class interfaces. It is through these class
interfaces that CaptureCore is accessed by an application. These class interfaces are
organized in a class hierarchy, where most classes are derived from common base classes. In
this way classes share common methods and functionality. The class hierarchy is shown
below in Figure 2.

PHASEONE

IRootObiect [«
[tootobiect |
IErrorObiect [------- 1-—>‘ IChildObiect |<---

]

[}

[}

IEventObiect [-------5
:
—[IProaressStatus

q

IObiectList
—[ICaptureProviderList]

ICameraList
IValueRead IValueWrite

:
[}
r
[}
[}
[}
[}
[}
:
I -
Y A] —[ICapturelmaageList]
[}
IProperty f--! ——
I ICapabilityList
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}

|

rLV
m
<
@D
>
=
>
=
o
c
3
@D
>
~+

—/

ISettinaValue -~
ICapability --

—[ISettinaDescriptor]
—[limageData]—{ ICapturelmaaeThumbnail] -
4[ICantureProvider]

.
ICaptureObiect ICapturelmaae
IEventSource
ICamera

—[IProaressSource }4

ICaptureCore [IEventReceiver] [ICaotureImaquemorvManaqer]

Figure 2: CaptureCore Class Hierarchy

IPropertyList

I

L ISettinaValueList]

|
J

2.4 Reference Counting

Reference counting is used throughout CaptureCore to automate the life-cycle of all objects.
As long as a reference exists to an object, it exists and its resources are not released by
CaptureCore. When the last reference to an object is released, the object is automatically
destroyed. Reference counting is automated in .Net and ObjC, so applications developed in
those environments do not need to explicitly retain or release references.

A parent object also keeps a reference to all its child objects. When a parent no longer needs
a child object, it releases its reference to the child, and that child no longer has a parent.
Normally the reference held by the parent is the last reference to the child object and it is
immediately destroyed. However, if the application also has a reference to the child object,
the child object continues to exist and becomes an orphan. Calls to the child objects Parent
method will return a NULL reference. Once the application releases its last reference to an
orphaned child object, it is finally destroyed.

2.5 Multithread Applications

All CaptureCore objects and their methods and properties are thread-safe. Thus applications
don’t generally need to use any thread synchronization to use CaptureCore. However, when
several calls to a CaptureCore object are desired to be atomic, the application can still find it

PHASEONE

useful to use a locking mechanism around some CaptureCore calls. It is up to the application
to provide this locking mechanism.

For example, if an application wishes to check if an object is open before calling a method
that only succeeds if it is open, it may wish to put a lock around these two calls, to ensure that
no other application thread closes the object between these two calls. This also requires
placing a lock around all calls to close the object in the application.

CaptureCore uses multiple threads to perform several background tasks. Calls to application
provided event receivers, and other callback interfaces, are performed by background threads.
Thus application implementations of callback interfaces need to be thread-safe with regards
to other code in the application.

2.6 Errors, Exceptions and Return Values

CaptureCore objects generally communicate errors by throwing exceptions. Any method in
CaptureCore can throw an exception if an error occurs. An application should be prepared to
handle exceptions from any call to a CaptureCore method. CaptureCore exception objects are
derived from the IErrorObject class, which contains methods for determining which error
occurred, and description and detail strings for the error. In addition, for each development
environment, CaptureCore exception objects are also derived from the native exception class
for that environment, such as System.Exception in .Net and NSException in ObjC.

Obijects of classes derived from IErrorSource, can also report an error though the GetError
method of IErrorSource. This allows such objects to report errors that occur on background
threads, that is errors that do not arise directly from a method call. If an IErrorSource object
is also derived from IEventSource, a kEventld_Error event is posted whenever there is a new
error that can be retrieved by calling GetError. Applications should monitor objects derived
from IErrorSource for the kEventld_Error event, and retrieve the error by calling GetError.

CaptureCore does not use return values as a mechanism for reporting errors. However, many
methods in CaptureCore return pointers or references to objects, and these methods will
return a NULL reference, when the requested object is not available. This is not an error, but
a normal return value for these methods. In the event of a true error, these methods will still
throw an exception. Applications should expect to get a NULL value for any object pointer or
reference returned from a CaptureCore method, and test for NULL before using the object.

2.7 Value Classes and Types

Several CaptureCore classes represent simple values, such as numbers or strings. These value
classes are derived from either IValueRead or IValueWrite, such as the classes 1Capability
and IProperty, which represent an object’s capabilities and properties. IValueRead classes
represent read-only values, whereas IValueWrite classes represent values that can both be
read and written. IValueWrite inherits from IValueRead.

Values represented by IValueRead or IValueWrite can be one of several different value types,
defined by the enumeration EnumValueType: a Boolean, 32- and 64-bit signed and unsigned
integers, a floating point, a string, or an enumeration. An enumeration value type is both a 32-
bit signed/unsigned integer and a string at the same time. Regardless of the actual value type
of a value, a string representation can be retrieved for all values. The value type of a value
class can be retrieved by the ValueType method of 1ValueRead (and 1ValueWrite).

An application reads or writes the value represented by a value class by calling one of the
GetValue and SetValue methods defined by 1ValueRead and IValueWrite. These methods will
throw an exception if an incompatible value type is passed to the method.

PHASEONE

For many classes, and especially for capabilities and properties, the value type of a value
object is not predefined. Applications should not expect a value object to be of any particular
value type, and should attempt to handle all value types for each and every value object.

2.8 Capabilities

Objects of some classes, specifically those derived from ICaptureObject, can have
capabilities. A capability describes a conditional feature that is sometimes available.
Capabilities allow an application to test if an object has a feature before attempting to use it.
Capabilities are different from properties in that capabilities are always read-only and are
usually only used by the application for conditionally enabling functionality.

Capabilities are represented by the ICapability class, which is derived from IValueRead, and
are organized in a list (ICapabilityList) for each class that supports capabilities. They are
uniquely identified by a capability ID (enumeration value), and a specific capability can be
retrieved by iterating the capability list or calling the GetCapability method.

Capabilities can be of any value type (EnumValueType), such as a number or a string, but
generally they will be a Boolean value. There is no guarantee that a specific capability will be
of a specific value type. An application should be prepared to handle different value types for
every capability. It is recommended that an application always tests a capability’s value type
before using it. When a capability changes value, the owning class will often post an event to
indicate this.

Which capabilities are present is determined by the implementation of the class which has
capability support. The application should not use a feature if the capability representing the
feature is not present for a specific class, or if the capability indicates that the feature is not
supported. Doing so may result in an exception, though often the functionality will just do
nothing.

See the Capability Reference section for a list over all capabilities supported by different
classes.

2.9 Properties

Obijects of some classes, specifically those derived from ICaptureObject, can have properties.
A property describes a setting or some user information for the object. Some properties are
read-only, and describe things such as a capture device’s serial number or model name. Other
properties are writeable, such as exposure ISO, and may have a setting descriptor object that
describes which values or the range that they can be set to. Properties are designed to be
easily presented to the user via common user-interface controls, such as an edit, drop-down
list, or combination control.

Properties are represented by the IProperty class, which is derived from IValueWrite, and are
organized in a list (IPropertyList) for each class that supports properties. They are uniquely
identified by a property ID (enumeration value), and a specific property can be retrieved by
iterating the property list or calling the GetProperty method.

Properties can be of any value type, such as a number or a string. There is no guarantee that a
specific property will be of a specific value type. An application should be prepared to handle
different value types for every property. It is recommended that an application always tests a
property’s value type before using it. When a property changes value, the owning class will
often post an event to indicate this.

PHASEONE

Properties may have a setting descriptor object (ISettingDescriptor) that describes the values
or the range that they can be set to. Even if the property is read-only it may have a setting
descriptor. When a property is set to a value by an application, the value is validated with the
settings described by its setting descriptor, and an exception is thrown if the value is not
allowed. If no setting descriptor object is present, then there is no limit to what the property
can be set to (within the limits of the value type of the property). Simple setting descriptors
provide a minimum/maximum range for the property. Others provide a list of values that the
property can be set to. This list can be select only, where only values in the list are allowed,
or it could just represent commonly used values, allowing the property to be set to values not
in the list. When a setting descriptor changes value, the owning class will often post an event
to indicate this.

Some properties have default values (defined by the setting descriptor) and can be restored to
their default. Properties can have an undefined value (see IsUndefined), if the current value is
unknown or not available. This often just indicates that the property has not been set yet. The
property can also be disabled (see IsDisabled), if the property is currently not accessible or
unavailable for some reason. A disabled property is automatically read-only, and may even
throw an exception if read. A property can be disabled or enabled at any point in time,
depending upon the cause. An event is generally posted when this occurs.

Generally, properties are automatically synchronized with the source or device that owns the
property, but not always, especially if it will negatively affect performance, or if it is not
technically possible to do so. In this case, an application can call the Refresh method to
request a manual synchronization from the property source.

When using properties, an application has two possibilities: it can request specific properties
using their property IDs and handling if the property doesn’t exist, or it can support all
properties exposed by an object, without even examining the property ID. The first method
allows specific properties to be picked out and presented to the user. The application must
still be prepared to handle all value types for each property. The second method displays all
available properties in a generic manner, using the strings contained within the property
object to describe the property. Since an application may not be aware of all possible property
IDs at the time of creation, the second method is more generic and future compatible. Both
methods can of course be combined, handling some properties differently, while still listing
all remaining.

See the Property Reference section for a list over all properties supported by different classes.

2.10 Events

Objects derived from the IEventSource class can post events. Events typically represent
changes in state for the object and are represented by an IEventObject object. Each event is
uniquely identified by an event ID (enumeration value). The possible event IDs for each
object are described in each class description. Events can also include event arguments,
which are simple values represented by an IEventArgument object.

An application subscribes to events by adding an event receiver to an IEventSource object.
An event receiver is an application implemented class that implements the IEventReceiver
interface. The IEventReceiver interface has one method: OnEvent, which is called when
delivering events to the event receiver. The application is free to implement the
IEventReceiver interface in combination with other interfaces, or as part of another
application class. Typically, an application implements the IEventReceiver interface for each
class that will receive events.

PHASEONE

Applications call the AddReceiver or RemoveReceiver methods of an IEventSource object to
subscribe or unsubscribe to events from that object. An application can chose to subscribe to
specific events, by passing the desired event ID to AddReceiver, or to subscribe to all events
by passing kEventld_All.

All events are asynchronous. That is events are delivered by a separate thread than that which
posted the event. Thus an event receiver will receive the event shortly after it occurred. This
delay is usually very small, in the order of microseconds, but can vary depending upon how
busy the computer is. An event dispatch thread is created for each subscribed event receiver.
Thus an event receiver cannot delay the delivery of events to other event receivers. Events for
a single event receiver are always delivered sequentially in order, and an event receiver will
not receive a new event before returning from a previous call to OnEvent.

In order to keep the flow of events as timely as possible, it is the responsibility of the
application’s IEventReceiver implementation to handle each event promptly, and to not call
any methods that may block indefinitely. Further, a call to RemoveReceiver will block until
an event receiver’s OnEvent method has returned, and this could lead to a deadlock situation.
Thus, applications should avoid waiting on threads in their OnEvent implementation, if the
same thread may call RemoveReceiver. For example, if an OnEvent implementation waits on
the main thread to perform some action, and the main thread calls RemoveReceiver, then both
threads end up waiting on each other, and a deadlock occurs.

Although events are dispatched sequentially to each receiver, there is no guarantee regarding
the order that events are sent from any part of CaptureCore, due to the multithreaded nature
of CaptureCore. Thus the application should avoid making any assumptions about the order
of events, or have cross-dependencies between events. For example, a progress event of
100% may not always be sent, before an image arrived event, and may come slightly out of
order or not at all. Further, an image arrived event may not be sent, following progress events
for that image, if the image is cancelled before completion.

Generally, each event is self-contained, and is designed to communicate only a single piece
of information, and event handling code should be designed similarly. For example, only use
progress events to update a progress control, without any additional actions. Since event
delivery can be delayed, the state reported by the event may not be current. Event handling
code may wish to verify the state reported by an event, before taking the appropriate action.

2.11 Progress

Objects derived from IProgressSource, such as ICamera objects, can inform the application
of the progress status of different tasks. The progress status of a task is described by
IProgressStatus objects, which are queued by the IProgressSource object. An
IProgressSource object posts an kEventld ProgressUpdate event when a new
IProgressStatus object is queued, which an application can retrieve by calling the
GetProgress method of the IProgressSource class.

More than one task can be active at the same time. The Id and Instance members of
IProgressStatus can be used to differentiate between different progress tasks. Id returns an
enumeration value which specifies the kind of progress the IProgressStatus object describes,
such as image capture or file saving progress. Instance returns an unique number for each
progress task. No two progress tasks will have the same instance number.

IProgressStatus objects contain many members which provide string descriptions of the
progress task, as well as how much of the task is completed, and how long the task has been

PHASEONE

running. In addition, it is possible for some tasks to cancel the task, by calling the Cancel
member of the IProgressStatus class.

IProgressStatus objects are queued, and therefore there is a time lag between when the status
was generated and when it is retrieved by the application. The application should therefore
try to handle progress status events as quickly as possible, to minimize this lag.

The application should be careful to avoid making any assumptions about the delivery of
progress status for a specific task. For example a task may not always reach 100%, due to an
error or if it is cancelled. Further, no guarantee is made about the order of progress events
with other CaptureCore events. Progress status should be regarded as informational only, and
used for display purposes and not to control the state of the application.

2.12 Log File and Cache Folder

CaptureCore can be setup to log messages regarding the internal activities of CaptureCore to
a log file. Log messages can be useful for tracking the internal operations carried out by
CaptureCore, as well as logging errors and warnings. Log messages include the date, time
and thread ID for each message. The LogMsgFileName methods of the ICaptureCore class
can be used to set or clear the log file’s filename. If not filename is set, which is the default
state, then no log file is created. The application is responsible for ensuring that the path to
the log file is valid, and that the application has file creation rights for the provided path.
Note that CaptureCore appends to an existing file, so given enough time the log file can
become quite large.

CaptureCore can cache certain object data and settings in order to increase performance and
provide setting persistency. Cache files are created for each device within an application
specified cache folder. The CacheFolderName methods of the ICaptureCore class can be
used to set or clear the cache folder path. If no cache folder is specified, which is the default,
then no cache files are used. It is highly recommended to define a cache folder for
applications using CaptureCore. The application is responsible for ensuring that the provided
folder path is valid, and that the application has both folder an file creation rights.

2.13 Generality and Future Compatibility

CaptureCore supports many different capture devices from several vendors. In order to
handle all the possible variations that exist now or in the future, CaptureCore is designed with
a focus on generality. Many features of CaptureCore are dynamic, such as capabilities,
properties, and value types.

An application will generally need to do a bit more work in order to support this generality,
such as checking for the value type of a value object, or testing for a capability before using a
specific feature. However, the advantage is great. Once the application code is written, few if
any changes will be necessary to support new devices in the future, or to be compatible with
future changes in CaptureCore.

It is highly recommended that application developers embrace the generality of CaptureCore
when implementing the applications that will use it. They will gain much in terms of future
compatibility. Assumptions about how CaptureCore works, based upon observation, should
be avoided. For example, one cannot assume that the value type of a specific property will
always be the same for all devices or all versions of CaptureCore. Nor can one assume that
events will always arrive or that they will arrive in a certain order.

It is also a good practice to always test the return values of every call, and to be prepared for
exceptions from any call.

10

PHASEONE

2.14 Development Environment Differences

There are a few differences from the general documentation for each of the development
environments.

2.14.1 .Net

All exceptions thrown by CaptureCore are instances of the CaptureCoreException class. A
CaptureCoreException object implements the 1ErrorObject interface and also inherits from
System.Exception. This is because .Net requires all exception objects to be derived from
System.Exception. Thus CaptureCoreException objects provide both the IErrorObject
methods documented in this document and the .Net System.Exception class methods.

2.14.2 ObjC

All CaptureCore class names are preceded by a P1CaptureCore_ prefix to avoid conflicting
with other names in the global namespace of the application. This is done since ObjC does
not support namespaces.

11

PHASEONE

3 Reference

3.1 GetCaptureCore

GetCaptureCore initializes CaptureCore and returns the top-level ICaptureCore object in the
CaptureCore object hierarchy, through which all CaptureCore functionality is accessed.

Syntax
.Net

C# static ICaptureCore CaptureCoreEntry.GetCaptureCore ()

C++ | static ICaptureCore” CaptureCoreEntry::GetCaptureCore ()

VB Shared Function CaptureCoreEntry.GetCaptureCore As ICaptureCore

ObjC

@interface PlCaptureCore CaptureCore
+ (id) getCaptureCore

Return Value

The top-level ICaptureCore object of the CaptureCore object hierarchy. A NULL reference is
returned if CaptureCore cannot be initialized. There is only a single ICaptureCore object in
the CaptureCore object hierarchy, so subsequent calls to this function will return the same
object.

12

PHASEONE

3.2

ICaptureCore (P1CaptureCore_CaptureCore)

The ICaptureCore class provides access to all the functionality of CaptureCore. Only a single
instance of an ICaptureCore object exists, and is retrieved by calling GetCaptureCore.

ICaptureCore is a parent to ICaptureProvider (ICaptureProviderList) objects.

Members

Version Returns the version string of the CaptureCore
assembly/framework file.

Revision Returns the interface revision number of the CaptureCore
assembly/framework file.

Terminate Releases all CaptureCore resources. Once Terminate is called,

CaptureCore can no longer be used.

GetCaptureProviderList

Returns a list of all supported capture device providers.

LogMsgFileName Get or set an optional filename for storing log messages

(Get/set) generated by CaptureCore.

CacheFolderName Get or set an optional cache folder for storing any cached data

(Get/set) files that CaptureCore uses for improving performance.

GetMillisecondCount Returns the current time in milliseconds, used internally by
CaptureCore.

IdToString Converts an ID enumeration value to its string representation.

StringToId Converts a string representation returned by IdToString back
to its ID enumeration value.

3.2.1 Version

Version returns the version string of the CaptureCore assembly/framework file.

Syntax

.Net

C# string Version { get; }

Ctt property System::String”® Version

{ System::String” get(); }
VB ReadOnly Property Version As String
ObjC

- (NSString *) version

Return Value

A string containing the major, minor, revision, and build numbers for the CaptureCore
assembly/framework. The string is a dot delimited string of numbers in the form of
mmm.nnn.rrr.bbb, Where mmm IS the major version, nnn is the minor version, rrr is the
interface revision, and bbb is the build number. The version string is static and doesn’t
change dynamically.

Remarks

The version number is used internally by Phase One for tracking the version of CaptureCore,
and corresponds to the file version of the CaptureCore assembly/framework. The major,

13

PHASEONE

minor and build numbers generally correspond to application or SDK releases. Only the
interface revision number represents an actual iteration in the CaptureCore specification.
Applications can use the Revision method to retrieve directly the interface revision as a
number.

3.2.2 Revision

Revision returns the interface revision number of the CaptureCore assembly/framework file.

The interface revision number is directly related to the CaptureCore specification described
by this document. This number can be used to ensure that the CaptureCore version being used
corresponds to what the application was designed for.

Syntax
Net

C# ushort Revision { get; }

property System::UIntl6 Revision

CH+ { System::UIntl6 get(); }

VB ReadOnly Property Revision As UShort

ObjC

- (uintlé_t) revision

Return Value

The interface revision number of the CaptureCore assembly/framework file. The revision
value is static and doesn’t change dynamically.

3.2.3 Terminate

Terminate releases all resources used by CaptureCore objects. Calling this method is
optional, and is called on the application’s behalf when the application exits. Applications
can use this method to explicitly control the release of CaptureCore resources. Once
Terminate is called, CaptureCore can no longer be used, until the application is restarted.

Syntax
Net

C# void Terminate ()

C++ | void Terminate ()

VB Sub Terminate

ObjC

- (void) terminate

Remarks

Normally the resources used by any existing CaptureCore objects are automatically released
when the objects no longer exist, that is when no references to those objects remain. A single
instance of ICaptureCore persists even if it is no longer in use, and that instance may also
hold references to ICaptureProvider objects, which likewise may hold references to ICamera
objects, and so on. These persistent objects are only released when the application exits.

Alternatively, an application can call Terminate to release the resources held by these
persistent objects when they are no longer needed. Some objects may continue to exist, but
any significant resources held by them will be released. Any remaining objects will become
unusable, and no part of CaptureCore can be used, before the application is restarted.

14

PHASEONE

3.2.4 GetCaptureProviderList

GetCaptureProviderList returns a ICaptureProviderList object containing ICaptureProvider
objects representing all supported capture device providers. An ICaptureProvider object
could represent capture devices from different manufacturers, such as Phase One, or different
protocols for devices from the same manufacturer.

Syntax
.Net

C# ICaptureProviderList GetCaptureProviderList ()

C++ | ICaptureProviderList” GetCaptureProviderList ()

VB Function GetCaptureProviderList As ICaptureProviderList

ObjC

- (PlCaptureCore CaptureProviderList *) getCaptureProviderList

Return Value

An ICaptureProviderList object containing all 1CaptureProvider objects that are supported
by this instance of ICaptureCore. A NULL reference or an empty list is returned if no
providers are supported.

Remarks

All ICaptureProvider objects are generally created during startup, or during the first call to
GetCaptureCore or GetCaptureProviderList. All providers that are successfully created and
initialized are returned in the provider list. After initialization the list is static — providers will
not be added or removed from the list.

3.25 LogMsgFileName (Get/Set)

LogMsgFileName get or sets an optional filename for storing log messages generated by
CaptureCore.

Syntax
.Net
string GetLogMsgFileName ()
c# void SetLogMsgFileName (string fileName)
Cit System: :String” GetLogMsgFileName ()
void SetLogMsgFileName (System::String” fileName)
VB Function GetLogMsgFileName As String
Sub SetLogMsgFileName (fileName As String)
ObjC

- (NSString *) logMsgFileName

- (void) setLogMsgFileName: (NSString *) fileName

Parameters (Set)

fileName Path to the log file that CaptureCore will write log messages to.
An empty path or a NULL reference will clear the current file
name, and disable the writing of log messages to a file.

Return Value (Get)

The path to the file that is currently set as the CaptureCore log file. A NULL reference or an
empty path is returned if the writing of log messages is currently disabled.

15

PHASEONE

Remarks

CaptureCore writes log messages to the indicated file in Unicode format, and always appends
to the current file’s contents. Note that the file size is not limited by CaptureCore and may
grow quite large over a long period of time.

Log messages include the date, time and thread ID for each message. Log messages can be
useful for tracking the internal operations carried out by CaptureCore, as well as logging
errors and warnings.

3.2.6 CacheFolderName (Get/Set)

CacheFolderName gets or set an optional cache folder for storing any cached data files that
CaptureCore uses for improving performance.

Syntax
.Net

i string GetCacheFolderName ()

SetCacheFolderName (string folderName)

System: :String”® GetCacheFolderName ()

C++

void SetCacheFolderName(System::String” folderName)
VB Function GetCacheFolderName As String

Sub SetCacheFolderName (folderName As String)
objC

- (NSString *) cacheFolderName

- (void) setCacheFolderName: (NSString *) folderName

Parameters (Set)

folderName Path to the folder to store CaptureCore cache files in. An empty
path or a NULL reference will clear the current folder name,
and disable the storing of cache files.

Return Value (Get)

The path to the folder that is the current cache folder for CaptureCore. A NULL reference or
an empty path is returned if storing cache files is currently disabled.

Remarks

CaptureCore requires write access to the cache folder. In addition to creating cache files,
CaptureCore will create subfolders to organize the files. It is not necessary to specify a cache
folder for the proper operation of CaptureCore.

Cache files store data that can improve performance, such as storing calibration data for a
specific device so that it doesn’t need to read the calibration data every time the device
connects. Cache files may also contain capture settings for the device that are not persisted on
the device.

3.2.7 GetMillisecondCount

GetMillisecondCount returns the current time in milliseconds, used internally by
CaptureCore.

16

PHASEONE

Syntax
Net

C# uint GetMillisecondCount ()

C++ | System: :UInt32 GetMillisecondCount ()

VB Function GetMillisecondCount As Ulnteger

ObjC

- (uint32 t) getMillisecondCount

Return Value

Time in milliseconds used by CaptureCore internally. The time returned is relative to a fixed
point in time, and should not be used to determine the absolute time.

3.2.8 IdToString

IdToString converts an ID enumeration value to its string representation.

Syntax
.Net

C# string IdToString(uint idvValue)

C++ | System: :String” IdToString(System::UInt32 idValue)

VB Function IdToString(idValue As Ulnteger) As String

ObjC

- (NSString *) idToString: (uint32 t) idvValue

Parameters

idvalue The enumeration value of the ID to convert to a string.
Generally these are capability or property IDs, documented in
the capability and property reference sections.

Return Value

A string representation for the enumeration value given by idValue. A string representation is
the name of the enumeration as a string. For example, the string “kCameraProperty Model”
is the string representation for the enumeration value kCameraProperty Model.

If no string representation exists for idValue, the method returns an empty string or a NULL
reference.
3.2.9 StringTold

StringTold converts a string representation returned by IdToString back to its ID enumeration
value.

Syntax
Net

C# StringToId(string strId)

C++ | void StringToId(System::String” strId)

VB Function StringToId(strId As String) As Ulnteger

ObjC

‘— (uint32 t) stringToId: (NSString *) strId

17

PHASEONE

Parameters

strid A string returned by IdToString, or a string representation of an
ID enumeration value, typically a capability or property 1D
enumeration value. A string representation is just the name of
the enumeration as a string. For example, the string
“kCameraProperty Model” is the string representation for the
enumeration value kCameraProperty Model.

Return Value

The 1D enumeration value corresponding to strid. If no enumeration value exists for strld, the
method returns 0.

18

PHASEONE

3.3 ICaptureProviderList (P1CaptureCore_CaptureProviderList)

The ICaptureProviderList class is a list container for ICaptureProvider objects. It is a child
object of ICaptureCore, and inherits from IChildObject and 10bjectList.

Members

Inherited from IChildObject

Parent Returns the parent ICaptureCore object of this object.

Inherited from IObjectList

Size Returns the number of ICaptureProvider items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first ICaptureProvider item in the list.
Last Returns a reference to the last ICaptureProvider item in the list.
Next Returns a reference to the next ICaptureProvider item in the list following a

specified ICaptureProvider item already in the list.

Previous | Returns a reference to the previous ICaptureProvider item in the list preceding
a specified ICaptureProvider item already in the list.

Insert Inserts a new item in front of another specified ICaptureProvider item in the
list. Requires insert access rights.

Remove Removes a specified ICaptureProvider item from the list. Requires remove
access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess | Returns the access rights for this list as a bitmask of EnumListAccess values.

HasAccess | Returns true if the list allows the specified access rights.

19

PHASEONE

3.4 ICaptureProvider (P1CaptureCore_CaptureProvider)

The ICaptureProvider class represents a supported capture device provider. It could represent
capture devices from different manufacturers, such as Phase One, or different protocols for
devices from the same manufacturer.

ICaptureProvider is a child object of ICaptureCore, and inherits from IChildObject,
ICaptureObject, IErrorSource, and IEventSource. It is a parent to ICamera (ICameralList),
ICapability (ICapabilityList), and IProperty (IPropertyList) objects.

Members

IsAvailable Returns true if the ICaptureProvider object is currently available to
be used. Unavailable objects throw an exception if any method other
than this method is called.

GetCameraList Returns a list of ICamera objects for the currently attached cameras
for this provider.

GetCamera Returns the ICamera object corresponding to a specified camera ID.

Inherited from IChildObject

Parent Returns the parent ICaptureCore object of this object.

Inherited from ICaptureObject

Id Returns an unique 1D representing the 1CaptureProvider object.

GetCapabilityList | Returns a reference to a ICapabilityList object containing all
ICapability objects for this ICaptureProvider object.

GetPropertyList Returns a reference to a IPropertyList object containing all IProperty
objects for this ICaptureProvider object.

GetCapability Returns a reference to an ICapability object for this ICaptureProvider
object, with a specified capability 1D.

GetProperty Returns a reference to an IProperty object for this ICaptureProvider
object, with a specified property ID.

Inherited from IErrorSource

GetError Returns the next IErrorObject object, if any, for the ICaptureProvider
object.

Inherited from IEventSource

AddReceiver Attaches an IEventReceiver object to receive events (IEventObject)
from the ICaptureProvider object.

RemoveReceiver Detaches a previously attached IEventReceiver object so that it no
longer receives events (IEventObject) from the ICaptureProvider
object.

Events

General (EnumCaptureProviderEventId)

kCaptureProviderEvent CameraAdded A camera object has been added to the camera list.

kCaptureProviderEvent CameraRemoved A camera object has been removed from the camera list.

20

PHASEONE

Inherited from ICaptureObject (EnumCaptureObjectEventId)

A capability’s value has changed. The first argument is

kCaptureObjectEvent CapabilityChange s
- the 1D of the changed capability.

A property’s value has changed. The first argument is the

kCaptureObjectEvent PropertyChange
- ID of the changed property.

A property’s setting descriptor has changed. The first

kCaptureObjectEvent SettingDescriptorChange "\
- argument is the 1D of the changed property.

One or more new properties have been added. The

kCaptureObjectEvent PropertyAdded . .
P ’ —roperty argument list contains the IDs of the new properties.

One or more properties have been removed. The

kCaptureObjectEvent PropertyRemoved . . .
P ’ —roperty argument list contains the 1Ds of the removed properties.

One or more new capabilities have been added. The

kCaptureObjectEvent CapabilityAdded . . .
- argument list contains the 1Ds of the new capabilities.

One or more capabilities have been removed. The
kCaptureObjectEvent CapabilityRemoved argument list contains the IDs of the removed
capabilities.

Inherited from IErrorSource (EnumGeneralEventId)

An error has occurred on a background thread. Indicates
kEventId Error that a new IErrorObject object has been queued by this
object.

Inherited from IEventSource (EnumGeneralEventId)

Used for subscribing or unsubscribing to all events via

kEventId All . .
- AddReceiver or RemoveReceiver.

34.1 IsAvailable

IsAvailable returns true if the ICaptureProvider object is currently available to be used. Even
if a capture provider object is created and initialized it may still not be currently available.
Some capture device types may only be available to one application at a time, or may require
certain files or services to be installed. In these cases IsAvailable will return false.

Syntax
Net

Ct# bool IsAvailable()

C++ | bool IsAvailable()

VB Function IsAvailable As Boolean

ObjC

- (BOOL) isAvailable

Return Value

True if the ICaptureProvider object is currently available for use.

Remarks

Unavailable objects throw an exception if any method other than IsAvailable is called.

The return value of IsAvailable is constant for any instance of an ICaptureProvider object, so
IsAvailable may be checked just once for each ICaptureProvider. The availability of each
ICaptureProvider object is determined during CaptureCore initialization. Thus if a provider
is not available, and the conditions preventing its availability are removed, CaptureCore must
be unloaded and restarted before IsAvailable will return true.

21

PHASEONE

3.4.2 GetCameralist

GetCameralL.ist returns a list of ICamera objects for the currently attached cameras supported
by this provider.

Syntax
.Net

C# ICameralist GetCameralList ()

C++ | ICameralList” GetCameralList ()

VB Function GetCameralist As ICameralist

ObjC

- (PlCaptureCore Cameralist *) getCameralist

Return Value

An ICameraList object containing an ICamera object for each currently attached camera that
is supported by this ICaptureProvider. A NULL reference or an empty list is returned if no
cameras are connected.

Remarks

The ICameraList object returned is a copy of an internal camera list. This internal camera list
is dynamic and can change as cameras are added or removed. When the internal list changes,
a kCaptureProviderEvent_CameraAdded or kCaptureProviderEvent_CameraRemoved event
is sent by the ICaptureProvider, informing the application that a new instance of the
ICameraList object is available.

3.4.3 GetCamera

GetCamera returns an ICamera object corresponding to a specified camera ID in the camera
list of this ICaptureProvider.

Syntax
Net

C# ICamera GetCamera(uint cameralD)

C++ | ICamera” GetCamera(System::UInt32 cameralD)

VB Function GetCamera(cameralD As Ulnteger) As ICamera

ObjC

- (PlCaptureCore Camera *) getCamera: (uint32 t) cameralD

Parameters

cameralD Numerical ID of the ICamera object to return. The ID
corresponds to the value returned by the ICamera Id member.

Return Value

The 1Camera object corresponding to the cameralD parameter. If no matching camera object
is found, then a NULL reference is returned.

3.4.4 kCaptureProviderEvent_CameraAdded

This event is posted by the ICaptureProvider object when a new ICamera object is added to
the camera list of the ICaptureProvider object.

22

PHASEONE

Arguments

0 [Optional] The camera ID of the ICamera object that was added to the camera
list. This argument may not always be present.

3.45 kCaptureProviderEvent_CameraRemoved

This event is posted by the ICaptureProvider object when an existing 1Camera object is
removed from the camera list of the ICaptureProvider object.

Arguments

0 [Optional] The camera ID of the ICamera object that was removed from the
camera list. This argument may not always be present.

23

PHASEONE

3.5 ICameraList (P1CaptureCore_Cameral.ist)

The ICameraList class is a list container for ICamera objects. It is a child object of
ICaptureProvider, and inherits from IChildObject and 10bjectList.

The 1CameralList object returned by the ICaptureProvider method GetCameralList is a copy
of an internally maintained camera list. This internal list can change dynamically in response
to method calls or events, such as a camera being connected or disconnected. Since the
returned list is a copy it doesn’t change dynamically. This protects the application from issues
that can arise when iterating through a list that it also changing during the iteration. The
ICaptureProvider object sends an event when its internal camera list changes, thus allowing

the application to retrieve a new copy if desired.

Members

GetCamera | Returns the ICamera object corresponding to a specified camera ID.

Inherited from IChildObject

Parent Returns the parent ICaptureProvider object of this object.

Inherited from IObjectList

Size Returns the number of ICamera items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first ICamera item in the list.

Last Returns a reference to the last ICamera item in the list.

Next Returns a reference to the next ICamera item in the list following a specified
ICamera item already in the list.

brevious | REtUMsa reference_to the previo_us ICamera item in the list preceding a
specified ICamera item already in the list.

Insert Insert_s anew item in frqnt of another specified ICamera item in the list.
Requires insert access rights.

Remove Removes a specified ICamera item from the list. Requires remove access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess | Returns the access rights for this list as a bitmask of EnumListAccess values.

HasAccess | Returns true if the list allows the specified access rights.

3.5.1 GetCamera

GetCamera returns an ICamera object corresponding to a specified camera ID in the camera

list.

Syntax

.Net

C# ICamera

GetCamera (uint cameralD)

C++ | ICamera” GetCamera(System::UInt32 cameralD)
VB Function GetCamera (cameralID As Ulnteger) As ICamera
ObjC

‘— (PlCaptureCore Camera *) getCamera: (uint32 t) cameralD

24

PHASEONE

Parameters

cameralD Numerical ID of the ICamera object to return. The ID
corresponds to the value returned by the 1Camera Id member.

Return Value

The 1Camera object corresponding to the cameralD parameter. If no matching camera object
is found, then a NULL reference is returned.

25

PHASEONE

3.6 ICamera (P1CaptureCore_Camera)

The ICamera class represents an attached capture device and provides capture setup and
control methods.

ICamera is a child object of ICaptureProvider, and inherits from IChildObject,
ICaptureObject, IErrorSource, IEventSource, and IProgressSource. It is a parent to
ICapturelmage (ICapturelmageList), ICapability (ICapabilityList), IProperty (IPropertyList),
and IProgressStatus objects.

If the ICamera object has the kCameraProperty HostStorageCapacity property, then the
application will need to set the property to indicate the amount of disk space that is available
for storage of images. Such devices generally disable capture, when the amount of host
storage space is insufficient to store any further images.

The ICamera class and is the fundamental class in CaptureCore. ICamera objects are used for
communicating and controlling a capture device, and for capturing and transferring images
from it.

ICamera objects can be in various states. When an 1Camera object is first retrieved from its
parent ICaptureProvider object, it is not yet open. The device may in fact not be available, if
it is in use by another application (see IsAvailable). The application cannot communicate with
the device before calling Open. Once Open is called, an application can get and set properties
on the device, and begin image capture.

To begin capturing, the application must first call StartCapture. The device will
automatically capture and transfer images to the host, whenever the shutter release is pressed
physically on the device or when the ShutterRelease method is called. To stop capturing and
release all capture related resources, the application calls the StopCapture method. Capturing
will also stop if an error occurs. Finally, the application can also pause capturing, which
temporarily disables the shutter and optionally pauses image transfer without doing a full
stop, by calling the PauseCapture method. The events kCameraEvent_CapturingStarted and
kCameraEvent_CapturingStopped are posted by the ICamera object when its capturing state
changes.

Captured images are placed in a ICapturelmageList object and can be retrieved by the
GetNextCapturelmage or GetCapturelmageQueue methods. During capture and transfer
images can be queued in the capture device, or be in transfer. Images that are not yet in the
capture image queue are called pending images, and the number of pending images is
returned by the PendinglmageCount method. The kCameraEvent PendinglmageCount
change event is posted when the number of pending images changes.

At any point in time, the capture device can be physically removed from the host. When this
occurs the IsConnected method returns false, and a kCameraEvent_CameraDisconnected
event is posted. After a device is disconnected, it may no longer be used an only the methods
StopCapture and Close can be called. If the same device is reconnected, a new ICamera
object is created to represent the device.

Members

IsAvailable Returns true if the ICamera object is available for use.

oven Opens the ICamera object and initializes communication with
P the attached device. Allows access to other members.

26

PHASEONE

Closes the ICamera object, disconnecting from the attached

Close . .
device, and releasing all resources.
sOben Returns true if the ICamera object is open, that is if a previous
P call to Open has succeeded, and Close has not yet been called.
Returns true if the device associated with the ICamera object is
IsConnected .
still connected to the host computer.
Enables the device to capture images, and starts the transfer of
StartCapture . .
captured images from the device to the host computer.
If capturing is started, disables the capturing of images and
optionally their transfer, without releasing all resources for
PauseCapture . . .
capturing. Call StartCapture again to continue the capture and
transfer of images.
If capturing is started, disables the capturing of images,
StopCapture optionally transfers any outstanding images, and finally
releases all resources related to capturing.
. Returns true if the ICamera object is ready to capture and
IsCapturing

transfer images, following a call to StartCapture.

IsCapturingPaused

Returns true if the ICamera object is ready to capture images,
but is currently paused following a call to PauseCapture.

PendingImageCount

Returns the number of images in the capture device’s internal
buffer or being transferred to the captured image queue.

ShutterRelease

Requests that the capture device capture an image.

GetNextCaptureImage

Retrieves the next captured image from the captured image
queue. The returned image is removed from the queue.

GetCaptureImageQueue

Returns the captured image queue as an ICapturelmageL.ist
object.

MaxCaptureQueueSize
(Get/Set)

Gets or sets the maximum captured image queue size.

RestoreDefault

Restores all properties and settings to their default value for a
specified component of the device. Not all device settings are
necessarily represented by properties. This method, if supported
ensures all settings are restored.

Inherited from IChildObject

Parent

Returns the parent ICaptureProvider object of this object.

Inherited from ICaptureObject

1d Returns an unique ID representing the ICamera object.
. . Returns a reference to a ICapabilityList object containing all
bil i . . .
certapabilitybist ICapability objects for this ICamera object.
GetPropertylist Returns a reference to a IPropertyList object containing all

IProperty objects for this ICamera object.

27

PHASEON

GetCapability

Returns a reference to an 1Capability object for this ICamera
object, with a specified ID.

GetProperty

Returns a reference to an IProperty object for this ICamera
object, with a specified ID.

Inherited from IErrorSource

GetError

Returns the next IErrorObject object, if any, for the ICamera
object.

Inherited from IEventSource

Attaches an IEventReceiver object to receive events

AddR i . .
cestver (IEventObject) from the ICamera object.
Detaches a previously attached IEventReceiver object so that it
RemoveReceiver no longer receives events (IEventObject) from the ICamera

object.

Inherited from IProgressSou

rce

GetProgress

Returns the next IProgressStatus object in the progress queue
for this ICamera object.

Events

General (EnumCameraEvent

Id)

kCameraEvent CameraDisconnected

The device associated with the camera has been
disconnected.

kCameraEvent ImageReceived

A new image object has been added to the image list.

kCameraEvent PendingImageCountChange The pending hnage counthaschanged.
kCameraEvent CapturingStarted Image capture has been started.
kCameraEvent CapturingStopped Image capture has been StOppEd.

Inherited from ICaptureObject (EnumCaptureObjectEventId)

kCaptureObjectEvent CapabilityChange

A capability’s value has changed. The first argument is
the ID of the changed capability.

kCaptureObjectEvent PropertyChange

A property’s value has changed. The first argument is the
ID of the changed property.

kCaptureObjectEvent SettingDescriptorChange

A property’s setting descriptor has changed. The first
argument is the ID of the changed property.

kCaptureObjectEvent PropertyAdded

One or more new properties have been added. The
argument list contains the IDs of the new properties.

kCaptureObjectEvent PropertyRemoved

One or more properties have been removed. The
argument list contains the IDs of the removed properties.

kCaptureObjectEvent CapabilityAdded

One or more new capabilities have been added. The
argument list contains the IDs of the new capabilities.

One or more capabilities have been removed. The

kCaptureObjectEvent_CapabilityRemoved argument list contains the 1Ds of the removed

capabilities.

Inherited from IErrorSource

(EnumGeneralEventId)

kEventId Error

An error has occurred on a background thread. Indicates
that a new IErrorObject object has been queued by this
object.

Inherited from IEventSource

(EnumGeneralEventId)

28

PHASEONE

Used for subscribing or unsubscribing to all events via

kEventId All . .
- AddReceiver or RemoveReceiver.

Inherited from IProgressSource (EnumGeneralEventId)

Indicates that a new IProgressStatus object has been

kEventId ProgressUpdate .
- queued by this object.

Phase One device specific (EnumPhaseOneCameraEventId)

Mac OS only. There is insufficient memory below the
2GB memory boundary for the operating system to setup
an isochronous FireWire transfer port between the host
and the device.

kP1CameraEvent MacCreatelLocallsochPortError

Progress Status

General (EnumCameraProgressId)

kCameraProgress_Open Progress status for the Open method.

kCameraProgress ImageTransfer Progress status for image transfers.

3.6.1 IsAvailable

IsAvailable returns true if the ICamera object is currently available to be used. Even if a
camera object is created and initialized it may still not be currently available. For example,
some capture devices may only be available to one application at a time. In these cases
IsAvailable will return false.

Syntax
Net

C# bool IsAvailable ()

C++ | bool IsAvailable ()

VB Function IsAvailable As Boolean

ObjC

- (BOOL) isAvailable

Return Value

True if the ICamera object is currently available for use.

Remarks

Unavailable objects throw an exception if any method other than IsAvailable is called.

Following a successful call to Open, the ICamera object will remain available for use by the
process that called Open. IsAvailable will return true as long as the ICamera object remains
opened (IsOpen returns true) and connected (IsConnected returns true). If an ICamera object
is already open in another process, IsAvailable will generally return false, and no other
methods including Open can be called on the object.

IsAvailable returns false if the associated device is disconnected (IsConnected returns true),
even if the ICamera object is currently open.
3.6.2 Open

Open opens the ICamera object and initializes communication with the attached device. This
reserves the device for use by the application.

Open must be called before many of the other class members, such as StartCapture,
PauseCapture, StopCapture, ShutterRelease and so on. It is generally not necessary to call

29

PHASEONE

Open for accessing inherited members like GetCapability and GetProperty. However, the
return result from calling some methods may differ depending upon whether the device is
open or not. See the documentation for other ICamera members for whether they require the
object to be open.

Syntax
Net

C# void Open ()

C++ | void Open ()

VB Sub Open

ObjC

- (void) open

Remarks

Once open, the ICamera object remains open until explicitly closed by calling Close, or the
device is no longer connected and there are no remaining references to the ICamera object.
The application should avoid leaving an ICamera object open, once it no longer needs it
open.

3.6.3 Close

Close closes the ICamera object, disconnecting from the attached device, and releasing all
resources. Close is called after a prior call to Open, when the application no longer needs to
reserve the device associated with the ICamera object.

Close can be called on an already closed device, though this does nothing.

Syntax
Net

C# void Close ()

C++ | void Close ()

VB Sub Close

ObjC

- (void) close

Remarks

Close automatically calls StopCapture with bWaitOnPending set to false, which may discard
any pending images not yet transferred from the device. If the application wishes to transfer
any pending images, it should call StopCapture with bWaitOnPending set to true, prior to
calling Close. Images already transferred to the ICamera object are not discarded by calling
Close.

3.6.4 IsOpen

IsOpen returns true if the 1Camera object is open, that is if a previous call to Open has
succeeded, and Close has not yet been called.

Syntax
.Net

C# bool IsOpen/()

C++ | bool IsOpen /()

VB Function IsOpen As Boolean

30

PHASEONE

ObjC

- (BOOL) isOpen

Return Value
True if the ICamera object is currently in an open state, otherwise false.

3.6.5 IsConnected

IsConnected returns true if the device associated with the ICamera object is currently
connected to the host computer.

Syntax
Net

C# bool IsConnected()

C++ | bool IsConnected()

VB Functions IsConnected As Boolean

ObjC

- (BOOL) isConnected

Return Value

True if the device associated with the 1Camera object is currently connected to the host
compulter.

Remarks

The return value of IsConnected can change in response to external events. So multiple calls
to IsConnected in a row could return different values. When the device is disconnected, a
kCameraEvent_CameraDisconnected event is sent.

Once a device is disconnected, that is IsConnected returns false, the state of the 1Camera
object will not return to connected. If the device that was formerly connected is reconnected,
a new ICamera object is created instead.

An ICamera object remains open, even if the device is no longer connected. An application
must still explicitly call Close, when it no longer wishes to communicate with the device.
Usually, an application calls Close immediately in response to an open device being
disconnected.

IsAvailable will also return false, once IsConnected returns false.

3.6.6 StartCapture

StartCapture enables the device to capture images, and starts the transfer of captured images
from the device to the host computer. StartCapture can also be called following a call to
PauseCapture to restart the capture and transfer of images.

The ICamera object must be in an open state (that is a successful call to Open has been made)
before calling StartCapture. StartCapture can be called on a device that is already capturing,
though this does nothing, unless capturing is paused.

StartCapture allocates any resources that are necessary for the capture and transfer of images,
such as internal image buffers. These resources may be significant and are usually released
when StopCapture is called, but may also only be released when Close is called.

31

PHASEONE

Syntax
Net

C# void StartCapture ()

C++ | void StartCapture ()

VB Sub StartCapture

ObjC

- (void) startCapture

Remarks
When the capturing state changes to started, a kCameraEvent_CapturingStarted event is sent.

This method is only supported if the ICamera object has the kCameraCapability_Capture
capability with a value of true.

3.6.7 PauseCapture

If capturing is started, PauseCapture disables the capturing of images and optionally their
transfer, without releasing all resources for capturing. It disables the shutter of the device, and
optionally also disables the transfer of pending images. Call StartCapture again to continue
the capture and transfer of images, or Stop to stop capturing and release all capturing
resources.

The ICamera object must be in a capturing state (that is a successful call to StartCapture has
been made) before calling PauseCapture. PauseCapture can be called when the ICamera
object is already paused. Doing so can change whether image transfer is paused, but the
capture of images will remain disabled.

Syntax
Net

C# void PauseCapture(bool bPauseTransfer)

C++ | void PauseCapture(bool bPauseTransfer)

VB Sub PauseCapture(bPauseTransfer As Boolean)

ObjC

- (void) pauseCapture: (BOOL) pauseTransfer

Parameters

bPauseTransfer If true, both the capture and transfer of images is paused. If
false, only the capture of images is paused, and pending images
continue to transfer.

Remarks

This method is only supported if the ICamera object has the kCameraCapability Capture
and the kCameraCapability _PauseCapture capabilities with a value of true. In addition, the
bPauseTransfer parameter is only supported if the ICamera object also has the
kCameraCapability PauseCaptureAndTransfer capability with the value of true.

3.6.8 StopCapture

If capturing is started, StopCapture disables the capturing of images, optionally transfers any
outstanding images, and finally releases all resources related to capturing. StopCapture
disables the shutter of the device and generally releases any resources allocated by
StartCapture, though in some cases some resources may only be released by a call to Close.

32

PHASEONE

The ICamera object must be in an open state (that is a successful call to Open has been made)
before calling StopCapture. StopCapture can be called on a device that is not capturing,
though this does nothing.

StopCapture can optionally wait on pending images. If the bwaitOnPending parameter is
true, then StopCapture disables capture and blocks until all pending images are transferred.
This can take some time. If bWaitOnPending is false, pending images are generally
discarded.

Syntax
.Net

C# void StopCapture (bool bWaitOnPending)

C++ | void StopCapture(bool bWaitOnPending)

VB Sub StopCapture(bWaitOnPending As Boolean)

ObjC

- (void) stopCapture: (BOOL) waitOnPending

Parameters

bWaitOnPending If true, StopCapture blocks until all pending images are
transferred. If false, pending images are generally discarded.

Remarks

The capturing state can also be automatically stopped by an external event, such as an error
or if the device is disconnected. When the capturing state is stopped, a
kCameraEvent_CapturingStopped event is sent.

If bWaitOnPending is true, StopCapture blocks until all pending images are transferred. If
there are any conditions that are hindering the transfer of pending images, then StopCapture
may block for a very long time, until these conditions are no longer present. Generally, the
transfer of images requires room in the image queue as well as memory for the new images.
Thus the application should continue to process pending images as they arrive, even during a
call to StopCapture. If the application stops processing transferred images, for example when
there is insufficient storage capacity, this could also result in StopCapture blocking until the
application begins processing images again.

If StopCapture is blocking while transferring pending images, then most other ICamera
methods, such as Open, Close, StartCapture, and so on, will also block until StopCapture is
complete.

This method is only supported if the ICamera object has the kCameraCapability Capture
capability with a value of true.
3.6.9 IsCapturing

IsCapturing returns true if the ICamera object is ready to capture and transfer images,
following a call to StartCapture. It returns the ICamera object’s current capturing state. Even
if capturing is paused, IsCapturing still returns true.

Syntax
.Net

C# bool IsCapturing()

C++ | bool IsCapturing/()

VB Function IsCapturing As Boolean

33

PHASEONE

ObjC

- (BOOL) isCapturing

Return Value
True, if the ICamera object’s is ready to capture and transfer images, even if it is paused.
Remarks

The capturing state of an ICamera object can be automatically stopped without an explicit
call to StopCapture, for example in the event of an error or if the device is disconnected.
When the capturing state changes, a kCameraEvent CapturingStarted or
kCameraEvent_CapturingStopped event is sent.

This method is only supported if the ICamera object has the kCameraCapability Capture
capability with a value of true.
3.6.10 IsCapturingPaused

IsCapturingPaused returns true if the 1Camera object is ready to capture images, but is
currently paused following a call to PauseCapture.

Syntax
.Net

C# bool IsCapturingPaused ()

C++ | bool IsCapturingPaused()

VB Function IsCapturingPaused As Boolean

ObjC

- (BOOL) isCapturingPaused

Return Value
True, if the ICamera object is ready to capture images, but is currently paused.
Remarks

The capturing state is started but paused, when StartCapture has been called to start
capturing, followed by a PauseCapture call. If capturing is paused, capturing can be restarted
by calling StartCapture, or stopped by calling StopCapture.

This method is only supported if the ICamera object has the kCameraCapability Capture
capability with a value of true.
3.6.11 PendingimageCount

PendinglmageCount returns the number of images in the capture device’s internal buffer or
being transferred to the captured image queue. Images already added to the captured image
queue are not counted as pending.

Syntax
.Net

C# uint PendingImageCount ()

C++ | System::UInt32 PendingImageCount ()

VB Function PendingImageCount As Ulnteger

ObjC

‘— (uint32_t) pendingImageCount

34

PHASEONE

Return Value

The number of pending images either in the device or in transfer. If the return value is
OXFFFFFFFF (i.e. —1), then there are pending images but the actual number of images is
unknown.

Remarks

When the pending image count changes, the kCameraEvent PendinglmageCountChange
event is sent.

This method is only supported if the ICamera object has the kCameraCapability Capture
and kCameraCapability_PendinglmageCount capabilities with a value of true.

3.6.12 ShutterRelease

ShutterRelease requests that the capture device capture an image. The device will generally
capture an image if it is possible to do so. However if the device is busy, cannot focus the
lens, or encounters some error, then no image may actually be captured. ShutterRelease does
not block while the image is being captured, it only sends a capture request to the device.

The 1Camera object must be in a capturing state and not paused (that is a successful call to
StartCapture must have been made) before calling ShutterRelease.

Syntax
.Net

C# void ShutterRelease ()

C++ | void ShutterRelease ()

VB Sub ShutterRelease

ObjC

- (void) shutterRelease

Remarks

This method is only supported if the ICamera object has the kCameraCapability Capture
and kCameraCapability_ShutterRelease capabilities with a value of true.

3.6.13 GetNextCapturelmage

GetNextCapturelmage retrieves the next captured image from the captured image queue. The
returned image is removed from the queue.

Syntax
.Net

C# ICaptureImage GetNextCapturelImage ()

C++ | ICaptureImage” GetNextCaptureImage ()

VB Function GetNextCapturelmage As ICapturelmage

ObjC

- (PlCaptureCore Capturelmage *) getNextCapturelmage

Return Value

The next ICapturelmage object in the captured image queue. A NULL reference is returned if
there are no more captured images in the queue.

35

PHASEONE

Remarks

Captured images remain in the captured image queue until they are removed by the
application or the ICamera object is destroyed. Calling the ICamera method StopCapture or
Close does not discard any captured images. If images are not removed from the queue, the
amount of memory used can grow significantly. To release memory used by an image, the
ICapturelmage object must both be removed from the queue, and all references to the object
released. Alternatively, the ICapturelmage method Close can be called on an 1Capturelmage
object to release the memory used by the image.

This method is equivalent to calling GetCapturelmageQueue and calling the
ICapturelmageList methods First and Remove, while checking all calls for NULL references.

This method is only supported if the ICamera object has the kCameraCapability_Capture
capability with a value of true.
3.6.14 GetCapturelmageQueue

GetCapturelmageQueue returns the captured image queue as an ICapturelmageList object.
The captured image queue contains all successfully captured and transferred images.

Syntax
Net

C# ICapturelImagelist GetCaptureImageQueue ()

C++ | ICaptureImagelList” GetCaptureImageQueue ()

VB Function GetCaptureImageQueue As ICapturelImagelist

ObjC

- (PlCaptureCore CapturelmagelList *) getCapturelmageQueue

Return Value

An ICapturelmageList object containing an ICapturelmage object for each captured image. A
NULL reference or an empty list is returned if there are no captured images.

Remarks

The returned ICapturelmageList object is not a copy of an internal queue. Thus the contents
of the ICapturelmageL.ist object can change dynamically as images are added or removed.

Captured images remain in the captured image queue until they are removed by the
application or the ICamera object is destroyed. Calling the ICamera method StopCapture or
Close does not discard any captured images. If images are not removed from the queue, the
amount of memory used can grow significantly. To release memory used by an image, the
ICapturelmage object must both be removed from the queue, and all references to the object
released. Alternatively, the ICapturelmage method Close can be called on an ICapturelmage
object to release the memory used by the image.

This method is only supported if the ICamera object has the kCameraCapability Capture
capability with a value of true.
3.6.15 MaxCaptureQueueSize (Get/Set)

MaxCaptureQueueSize gets or sets the maximum captured image queue size. This limits the
number of images that will be placed in the captured image queue. Whenever the queue is
full, further transfer of images will be automatically disabled, and re-enabled again once there
is space in the image queue.

36

PHASEONE

Syntax
.Net
uint GetMaxCaptureQueueSize ()
C# void SetMaxCaptureQueueSize(uint max)
Cit System: :UInt32 GetMaxCaptureQueueSize ()
volid SetMaxCaptureQueueSize (System::UInt32 max)
Function GetMaxCaptureQueueSize As Ulnteger
VB Sub SetMaxCaptureQueueSize(max As Ulnteger)
ObjC

- (uint32 t) maxCaptureQueueSize

- (void) setMaxCaptureQueueSize: (uint32 t) max

Parameters

max The maximum number of captured images to store in the
captured image queue. No limit is imposed, if max is set to O or
OXFFFFFFFF (i.e. -1).

Return Value

The current maximum captured image queue size. Zero or OXFFFFFFFF (i.e. —1) is returned
if there is no limit to the image queue.

Remarks

This method is only supported if the ICamera object has the kCameraCapability Capture
and kCameraCapability_MaxCaptureQueueSize capabilities with a value of true.

3.6.16 RestoreDefault

RestoreDefault restores all properties and settings to their default value for a specified
component of the device. Not all device settings are necessarily represented by properties.
This method, if supported ensures all settings are restored.

Syntax
Net

C# void RestoreDefault (EnumCameraRestore select)

C++ | void RestoreDefault (EnumCameraRestore select)

VB Sub RestoreDefault(select As EnumCameraRestore)

ObjC

- (void) restoreDefault: (EnumCameraRestore) select

Parameters

select The component of the device to restore all settings. See
EnumCameraRestore. The value kCameraRestore All will
restore all settings on all components.

Remarks

This method is only supported if the [ICamera object has the
kCameraCapability RestoreDefault capability with a value of true.

37

PHASEONE

3.6.17 kCameraEvent_CameraDisconnected

This event is posted by the ICamera object when the device associated with the camera
object has been disconnected.

Arguments
None

3.6.18 kCameraEvent_ImageReceived

This event is posted by the ICamera object when a new ICapturelmage object has been
added to the image queue of the ICamera object.

Arguments
None

3.6.19 kCameraEvent_PendinglmageCountChange

This event is posted by the ICamera object when the pending image count has changed.
Arguments

None

3.6.20 kCameraEvent_CapturingStarted

This event is posted by the ICamera object when image capturing has been started, following
a call to StartCapture. Subsequent calls to StartCapture before a call to StopCapture will not
generate another event.

Arguments
None

3.6.21 kCameraEvent_CapturingStopped

This event is posted by the ICamera object when the state of image capturing has changed to
stopped, usually as a result of a call to StopCapture. Capturing may also stop because of an
error.

Arguments
None

38

PHASEONE

3.7 ICapturelmageList (P1CaptureCore_Capturelmagelist)

The ICapturelmageList class is a list container for ICapturelmage objects. It is a child object
of ICamera, and inherits from IChildObject and 1ObjectList.

The ICapturelmagelList object returned by the ICamera method GetCapturelmageQueue can
change dynamically in response to method calls or events, such as a new image being
captured. Care should be taken to check for NULL return values when iterating the list, since
it can change dynamically. New images are added instantaneously to the end of the list by a
CaptureCore background thread. I1CapturelmagelList is still thread-safe like all objects in
CaptureCore, but an application should be aware that the contents of the list can change at
any moment.

Members

Returns the ICapturelmage object corresponding to a specified image

GetCapturelmage ID

Inherited from IChildObject

Parent Returns the parent ICamera object of this object.

Inherited from IObjectList

Size Returns the number of ICapturelmage items in the list.
IsEmpty Returns true if the list is empty.

First Returns a reference to the first ICapturelmage item in the list.
Last Returns a reference to the last ICapturelmage item in the list.

Returns a reference to the next ICapturelmage item in the list following

Next
° a specified 1Capturelmage item already in the list.
. Returns a reference to the previous ICapturelmage item in the list

Previous . . p- . . .
preceding a specified ICapturelmage item already in the list.

Tnsert Inserts a new item in front of another specified ICapturelmage item in
the list. Requires insert access rights.

Remove Removes a specified ICapturelmage item from the list. Requires remove
access rights.

Clear Removes all items from the list. Requires remove access rights.
Returns the access rights for this list as a bitmask of EnumListAccess

GetAccess
values.

HasAccess Returns true if the list allows the specified access rights.

3.7.1 GetCapturelmage

GetCapturelmage returns an ICapturelmage object corresponding to a specified image ID in
the image list.

Syntax
.Net

C# ICaptureImage GetCapturelmage(uint imagelD)

C++ | ICaptureImage” GetCapturelmage (System::UInt32 imagelID)

39

PHASEONE

‘ VB ‘Function GetCapturelImage (imageID As Ulnteger) As ICapturelmage

ObjC
‘— (PlCaptureCore Capturelmage *) getCaptureImage: (uint32 t) imagelD

Parameters

imagelD Numerical ID of the ICapturelmage object to return. The ID
corresponds to the value returned by the ICapturelmage Id
member.

Return Value

The ICapturelmage corresponding to the imagelD parameter. If no matching image object is
found, then a NULL reference is returned.

40

PHASEONE

3.8 ICapturelmage (P1CaptureCore_Capturelmage)

The ICapturelmage class represents a captured image file, it contains the image file and
provides methods for copying or saving the image file and accessing its metadata. Captured
images are encapsulated in an image file format, that is specific for the capture device, such
as TIFF or JPG. ICapturelmage methods do not give direct access to the image data, but
provide access to the image file which encapsulates the image.

Even though ICapturelmage represents an image file, the file is generally only stored in
memory. Captured image files can be quite large and thus can use a large amount of memory.
This memory is released when the ICapturelmage object is destroyed (no longer used) or by
calling the Close method. In some development environments, memory is automatically
garbage collected, but the algorithm only releases memory when no more memory is
available. In these environments, it is recommended to always call Close when the
ICapturelmage object is no longer needed, to force the memory to be released immediately.

ICapturelmage objects are created and queued by the ICamera class. When the object is
queued, a kCameraEvent_ImageReceived event is posted by ICamera. ICapturelmage objects
can be retrieved by calling the ICamera method GetNextCapturelmage, or via the
ICapturelmageL.ist object returned from the ICamera method GetCapturelmageQueue.

ICapturelmage is a child object of ICamera, and inherits from IChildObject, ICaptureObject,
IErrorSource, IEventSource. It is a parent to ICapability (ICapabilityList), and IProperty
(IPropertyList) objects.

Members

Close Closes the ICapturelmage object and releases all significant
resources.

FileSize Returns the size of the image file containing the captured image.

SaveToFile Saves the image file to a specified filename path.

SaveToBuffer Saves the image file to a specified memory buffer.

GetImageData Returns an IImageData object giving access to the image data of the
captured image.

GetThumbnail Returns an ICapturelmageThumbnail object representing a thumbnail

image of the captured image.

Inherited from IChildObject

Parent Returns the parent ICamera object of this object.

Inherited from ICaptureObject

Id Returns an unique ID representing the ICapturelmage object.

GetCapabilityList | Returns a reference to a ICapabilityList object containing all
ICapability objects for this ICapturelmage object.

GetPropertyList Returns a reference to a IPropertyList object containing all IProperty
objects for this ICapturelmage object.

GetCapability Returns a reference to an 1Capability object for this ICapturelmage
object, with a specified ID.

41

PHASEONE

GetProperty

Returns a reference to an IProperty object for this ICapturelmage
object, with a specified ID.

Inherited from IErrorSource

GetError
object.

Returns the next IErrorObject object, if any, for the ICapturelmage

Inherited from IEventSource

AddReceiver Attaches an IEventReceiver object to receive events (IEventObject)
from the ICapturelmage object.

RemoveReceiver Detaches a previously attached IEventReceiver object so that it no
longer receives events (IEventObject) from the ICapturelmage object.

Events

Inherited from ICaptureObject (EnumCaptureObjectEventId)

kCaptureObjectEvent CapabilityChange

A capability’s value has changed. The first argument is
the 1D of the changed capability.

kCaptureObjectEvent PropertyChange

A property’s value has changed. The first argument is the
ID of the changed property.

kCaptureObjectEvent SettingDescriptorChange

A property’s setting descriptor has changed. The first
argument is the 1D of the changed property.

kCaptureObjectEvent PropertyAdded

One or more new properties have been added. The
argument list contains the IDs of the new properties.

kCaptureObjectEvent PropertyRemoved

One or more properties have been removed. The
argument list contains the IDs of the removed properties.

kCaptureObjectEvent CapabilityAdded

One or more new capabilities have been added. The
argument list contains the 1Ds of the new capabilities.

kCaptureObjectEvent CapabilityRemoved

One or more capabilities have been removed. The
argument list contains the 1Ds of the removed
capabilities.

Inherited from IErrorSource (EnumGeneral

EventId)

kEventId Error

An error has occurred on a background thread. Indicates
that a new IErrorObject object has been queued by this
object.

Inherited from IEventSource (EnumGeneral

EventId)

kEventId All

Used for subscribing or unsubscribing to all events via

AddReceiver or RemoveReceiver.

3.8.1 Close

Close closes the ICapturelmage object and releases all significant resources. The memory
used by an ICapturelmage object can be quite large since the captured image file is generally
stored in memory. Close can be called when the ICapturelmage object is no longer needed to
immediately release this memory. If Close is not called it will still be released automatically

when the object is destroyed.

Syntax
.Net

C# void Close ()

C++ | void Close ()

VB Sub Close

42

PHASEONE

ObjC

- (void) close

Remarks

Memory used by ICapturelmage is released when the object is destroyed (no longer used) or
by calling Close. In some development environments, memory is automatically garbage
collected, but the algorithm only releases memory when no more memory is available. In
these environments, it is recommended to always call Close when the ICapturelmage object
is no longer needed, to force the memory to be released immediately.

3.8.2 FileSize
FileSize returns the size of the image file containing the captured image.

Syntax
.Net

C# uint FileSize ()

C++ | System::UInt32 FileSize()

VB Function FileSize As Ulnteger

ObjC

- (uint32 t) fileSize

Return Value

The size in bytes of the image file represented by the ICapturelmage object.
Remarks

The file size can change when some properties are changed.

3.8.3 SaveToFile
SaveToFile saves the image file to the specified filename path.

Syntax
.Net

C# void SaveToFile(string fileName)

C++ | void SaveToFile(System::String” fileName)

VB Sub SaveToFile(fileName As String)

ObjC

- (void) saveToFile: (NSString *) fileName

Parameters

fileName The filename path of the file to save the image file to.
Remarks

SaveToFile commits any changes to properties to the internal image file before saving the
result to the specified filename.

3.8.4 SaveToBuffer

SaveToBuffer saves the image file to the specified memory buffer.

43

PHASEONE

Syntax
Net

C# void SaveToBuffer (System.IntPtr pBuffer, uint size)

C++ | void SaveToBuffer(System::IntPtr pBuffer, System::UInt32 size)

VB Sub SaveToBuffer(pBuffer As System.IntPtr, size As Ulnteger)

ObjC

- (void) saveToBuffer: (void *) pBuffer size: (uint32 t) size

Parameters

pBuffer A pointer to the memory buffer to copy the image file to.

size The size of the buffer pointed at by pBuffer in bytes. No more
than size bytes will be copied to the buffer. If size is larger than
the image file size, the extra space will not be touched.

Remarks

SaveToBuffer commits any changes to properties to the internal image file before saving the
result to the specified filename. Changes to properties can change the required file size. After
changing ICapturelmage properties, always call FileSize before calling SaveToBuffer to get
the required file size

3.85 GetlmageData

GetlmageData returns an IlImageData object that gives access to the data of the captured
image.

Syntax
.Net

C# IImageData GetImageData ()

C++ | IImageData” GetImageData ()

VB Function GetImageData As IImageData

ObjC

- (PlCaptureCore CaptureImageData *) getImageData

Return Value

An limageData object giving access to the image data of the captured image. A NULL
reference is returned if this method is not supported.

3.8.6 GetThumbnail

GetThumbnail returns an ICapturelmageThumbnail object representing a thumbnail (reduced
resolution) image of the captured image. The width, height and initial color type of the
thumbnail are chosen by ICapturelmage, but preferred values can also be specified by the
caller, which will be used if possible.

Syntax
.Net

ICaptureImageThumbnail GetThumbnail (
uint preferredWidth, uint preferredHeight,

C# EnumColorType preferredColorType)

ICaptureImageThumbnail GetThumbnail ()

44

PHASEONE

ICaptureImageThumbnail” GetThumbnail (
System: :UInt32 preferredWidth, System::UInt32 preferredHeight,
CHt EnumColorType preferredColorType)
ICaptureImageThumbnail” GetThumbnail ()
Function GetThumbnail (
preferredWidth As Ulnteger, preferredHeight As Ulnteger,
VB preferredColorType As EnumColorType) As ICaptureImageThumbnail
Function GetThumbnail As ICaptureImageThumbnail
ObjC

- (PlCaptureCore CapturelImageThumbnail) getThumbnail

- (PlCaptureCore CaptureImageThumbnail) getThumbnail:
(uint32 t) preferredWidth preferredHeight: (uint32 t) preferredHeight

- (PlCaptureCore CaptureImageThumbnail) getThumbnail:
(uint32 t) preferredWidth preferredHeight: (uint32 t) preferredHeight
preferredColorType: (EnumColorType) preferredColorType

Parameters

preferredWidth The preferred width in pixels of the ICapturelmageThumbnail
object to return. ICapturelmage can choose to ignore this
parameter.

If zero, or when calling the version of GetThumbnail without
parameters, ICapturelmage will use a default width, which is
usually the width of the current embedded thumbnail if any.

preferredHeight The preferred height in pixels of the ICapturelmageThumbnail
object to return. ICapturelmage can choose to ignore this
parameter.

If zero, or when calling the version of GetThumbnail without
any parameters, ICapturelmage will use a default height, which
is usually the height of the current embedded thumbnail if any.

preferredColorType The preferred color type of the ICapturelmageThumbnail
object to return. ICapturelmage can choose to ignore this
parameter.

If kColorType_Undefined, or when calling the version of
GetThumbnail without any parameters, ICapturelmage will use
a default color type, which is usually the color type of the
current embedded thumbnail if any.

Note that the color type can be changed later by calling the
ICapturelmageThumbnail method SetColorType.

Return Value

An ICapturelmageThumbnail object containing a thumbnail image (reduced resolution) of
the captured image. A NULL reference is returned if no thumbnail is available or if one
cannot be generated.

45

PHASEONE

3.9 IlimageData (P1CaptureCore_ImageData)

The llmageData class represents the pixel data of an image or thumbnail. It provides methods
for copying the image’s pixels and getting and setting properties such as width, height, color,
and padding. IImageData objects are created and returned by the ICapturelmage methods
GetlmageData and GetThumbnail.

Members
ImageType Returns the type of the image.
ColorType (Get/Set) Gets or sets the current color type for the image.

IsColorTypeSupported | Returns true if a specified color type is supported by the image.

Width Returns the width of the image in pixels.

Height Returns the height of the image in pixels.

PixelCount Returns the number of pixels in the image. Equivalent to Width x
Height.

Orientation Returns the orientation of the image.

ImageSize Returns the total size in bytes of the image, with or without
padding.

LineSize Returns the size in bytes of a line in the image, with or without
padding.

PixelSize Returns the size of a pixel in the image, with or without padding.

LinePadding Gets or sets the current amount of padding in bytes to append to

(Get/Set) each line of the image.

PixelPadding Gets or sets the current amount of padding in bytes to append to

(Get/Set) each pixel of the image.

CopyPixels Copies the image pixels to a specified memory buffer, using the
current color type, line padding, and pixel padding.

ToBitmap Returns a copy of the image as a .Net Bitmap object. (.Net only)

toNSImage Returns a copy of the image as an ObjC NSImage object. (ObjC
only)

3.9.1 ImageType
ImageType returns the type of the image.

Syntax
Net

C# EnumImageType ImageType ()

C++ | EnumImageType ImageType ()

VB Function ImageType As EnumImageType

ObjC

‘— (EnumColorType) imageType

46

PHASEONE

Return Value
An EnumlmageType indicating the type of the image.

3.9.2 ColorType (Get/Set)

ColorType gets or sets the current color type for the image. The image’s color type is used by
CopyPixels when copying the image, and other methods, such as PixelSize, when reporting
the size of the image. The color type can often be changed after the image’s creation.
Supported color types can be determined by using IsColorTypeSupported.

Syntax
.Net

cH EnumColorType GetColorType ()

bool SetColorType(EnumColorType colorType)

EnumColorType GetColorType ()

C++

bool SetColorType(EnumColorType colorType)
VB Function GetColorType As EnumColorType

Function SetColorType(colorType As EnumColorType) As Boolean
ObjC

- (EnumColorType) colorType

- (void) setColorType: (EnumColorType) colorType

Parameters
colorType The new color type (EnumColorType) for the image.
Return Value

GetColorType returns the current color type for the image. SetColorType returns true if the
colorType parameter is supported by the image, otherwise it returns false and does not change
the color type.

Remarks

Generally, a image’s color type can only be changed to a compatible color type to the original
color type, such as from RGB to BGR or from RGB to RGBA. Additionally, the internal
representation of the image is usually not altered when setting the color type. The image
simply remembers which color type is desired, and returns that color type when calling
CopyPixels, or uses that color types pixel size when calculating sizes.

3.9.3 IsColorTypeSupported

IsColorTypeSupported returns true if the specified color type is supported by the image.

Syntax
.Net

C# bool IsColorTypeSupported(EnumColorType colorType)

C++ | bool IsColorTypeSupported(EnumColorType colorType)

VB Function IsColorTypeSupported(colorType As EnumColorType) As Boolean

ObjC

- (BOOL) isColorTypeSupported: (EnumColorType) colorType

Parameters
colorType The color type (EnumColorType) to test support for.

47

PHASEONE

Return Value
Returns true if the specified color type is supported by the image, otherwise it returns false.

3.94 Width
Width returns the width of the image in pixels.
Syntax
.Net
C# uint Width { get; }
Cit property System::UInt32 Width

{ System::UInt32 get(); }
VB | ReadOnly Property Width As Ulnteger
ObjC

- (uint32_t) width

Return Value

The width of the image in pixels.

Remarks

The width cannot be changed after the image’s creation.

3.9.5 Height
Height returns the height of the image in pixels.

Syntax
.Net

CH# uint Height { get; }

property System::UInt32 Height

++
c { System::UInt32 get(); }

VB ReadOnly Property Height As UlInteger

ObjC

- (uint32 t) height

Return Value

The height of the image in pixels.

Remarks

The height cannot be changed after the image’s creation.

3.9.6 PixelCount

PixelCount returns the number of pixels in the image.
Syntax

Net

C# uint PixelCount { get; }

property System::UInt32 PixelCount

C++

{ System::UInt32 get();

}

VB

ReadOnly Property PixelCount As Ulnteger

48

PHASEONE

ObjC

- (uint32 t) pixelCount

Return Value
The number of pixels in the image. Equivalent to Width x Height.

3.9.7 Orientation
Orientation returns the orientation of the image.

Syntax
.Net

C# EnumImageOrientation Orientation ()

C++ | EnumImageOrientation Orientation ()

VB Function Orientation As EnumImageOrientation

ObjC

- (EnumImageOrientation) orientation

Return Value

An EnumlImageOrientation indicating the orientation of the image. Image orientation is the
orientation of the device when the image was captured.

Remarks

To display the image in the correct orientation the image should be rotated by the amount
indicated by the EnumImageOrientation value.

3.9.8 ImageSize

ImageSize returns the total size in bytes of the image, with or without padding.

Syntax
.Net

C# uint ImageSize(bool bIncludePadding)

C++ | System::UInt32 ImageSize(bool bIncludePadding)

VB Function ImageSize(bIncludePadding As Boolean) As Ulnteger

ObjC

- (uint32_t) imageSize: (BOOL) bIncludePadding

Parameters

bincludePadding If true the return value includes both pixel and line padding,
otherwise no padding is included.

Return Value

The total size in bytes of the image. If the bincludePadding parameter is true, the value
includes both pixel and line padding, otherwise no padding is included. The current color
type (see ColorType) is also used for determining the total size.

3.9.9 LineSize
LineSize returns the size in bytes of a line in the image, with or without padding.

49

PHASEONE

Syntax

.Net

C# uint LineSize(bool bIncludePadding)

C++ | System::UInt32 LineSize(bool bIncludePadding)

VB Function LineSize(bIncludePadding As Boolean) As Ulnteger

ObjC
| - (uint32_t) lineSize: (BOOL) bIncludePadding

Parameters

bIncludePadding If true the return value includes both pixel and line padding,

otherwise no padding is included.

Return Value

The size in bytes of a line in the image. If the bincludePadding parameter is true, the value
includes both pixel and line padding, otherwise no padding is included. The current color
type (see ColorType) is also used for determining the line size.

Remarks

A line contains Width number of pixels, plus pixel padding and line padding.

3.9.10 PixelSize
PixelSize returns the size of a pixel in the image, with or without padding.

Syntax
.Net
C# uint PixelSize(bool bIncludePadding)
C++ | System::UInt32 PixelSize(bool bIncludePadding)
VB Function PixelSize(bIncludePadding As Boolean) As Ulnteger
ObjC
| - (uint32_t) pixelSize: (BOOL) bIncludePadding
Parameters
bIncludePadding If true the return value includes pixel padding, otherwise no

padding is included.

Return Value

The size of a pixel in the image. If the bincludePadding parameter is true, the value includes
pixel padding, otherwise no padding is included. The current color type (see ColorType) is
also used for determining the pixel size.

3.9.11 LinePadding (Get/Set)

LinePadding gets or sets the current amount of padding in bytes to append to each line of the
image.

Syntax

.Net

uint GetLinePadding()

C#

void SetLinePadding(uint padding)

C++

System: :UInt32 GetLinePadding ()

50

PHASEONE

void SetLinePadding(System::UInt32 padding)

VB Function GetlLinePadding As Ulnteger

Sub SetlLinePadding(padding As UlInteger)

ObjC

- (uint32 t) linePadding

- (void) setLinePadding: (uint32 t) padding

Parameters

padding The amount of line padding in bytes to append to the end of
each line in the image.

Return Value
GetLinePadding returns the current line padding in bytes.

3.9.12 PixelPadding (Get/Set)

PixelPadding gets or sets the current amount of padding in bytes to append to each pixel of
the image.

Syntax
.Net
uint GetPixelPadding()
c# void SetPixelPadding(uint padding)
Cit System: :UInt32 GetPixelPadding/()
void SetPixelPadding(System::UInt32 padding)
Function GetPixelPadding As Ulnteger
VB Sub SetPixelPadding(padding As Ulnteger)
ObjC
- (uint32 t) pixelPadding
- (void) setPixelPadding: (uint32 t)padding

Parameters

padding The amount of pixel padding in bytes to append to each pixel in
the image.

Return Value
GetPixelPadding returns the current pixel padding in bytes.

3.9.13 CopyPixels

CopyPixels copies the image pixels to the specified memory buffer, using the current color
type, line padding, and pixel padding.

Syntax

Net

C# void CopyPixels(System.IntPtr pBuffer, uint size)

C++ | void CopyPixels(System::IntPtr pBuffer, System::UInt32 size)

VB Sub CopyPixels(pBuffer As System.IntPtr, size As Ulnteger)

ObjC

‘— (void) copyPixels: (void *) pBuffer size: (uint32 t) size

o1

PHASEONE

Parameters

pBuffer A pointer to the memory buffer to copy the image pixels to.

size The size of the buffer pointed at by pBuffer in bytes. No more
than size bytes will be copied to the buffer. If size is larger than
the image size including padding, the extra space will not be
touched.

Remarks

CopyPixels copies the pixels using the current color type, line padding and pixel padding
settings. Remember to set these to their desired values before calling CopyPixels. The size
parameter should be as large as the value returned by ImageSize including padding, if the
entire image is to be copied.

3.9.14 ToBitmap [.Net Only]
ToBitmap returns a copy of the image as a .Net Bitmap object.

Syntax
.Net

C# System.Drawing.Bitmap ToBitmap ()

C++ | System: :Drawing: :Bitmap” ToBitmap ()

VB Function ToBitmap () As System.Drawing.Bitmap

Return Value

A new System.Drawing.Bitmap object with a copy of the image. The System.Drawing.Bitmap
object has the current color type if it is compatible with System.Drawing.Bitmap, otherwise it
is converted to the closest compatible color type.

3.9.15 toNSImage [ObjC Only]
toNSImage returns a copy of the image as an ObjC NSImage object.

Syntax
ObjC

- (NSImage *) toNSImage

Return Value

A new NSImage object with a copy of the image. The NSImage object has the current color
type if it is compatible with NSImage, otherwise it is converted to the closest compatible
color type.

52

PHASEONE

3.10 ICapturelmageThumbnail
(P1CaptureCore_CapturelmageThumbnail)

The I1CapturelmageThumbnail class represents a thumbnail/preview image of a captured
image. It contains the thumbnail and provides methods for copying its pixels and getting and
setting properties such as width, height, color, and padding. ICapturelmageThumbnail objects
are created and returned by the ICapturelmage method GetThumbnail.

ICapturelmageThumbnail inherits from IImageData. It currently has no methods of its own.
See the documentation for limageData for ICapturelmageThumbnail functionality.

Members

Inherited from IImageData

ImageType

Returns the type of the image.

ColorType (Get/Set)

Gets or sets the current color type for the image.

IsColorTypeSupported | Returns true if a specified color type is supported by the image.

width Returns the width of the image in pixels.

Height Returns the height of the image in pixels.

PixelCount Returns the number of pixels in the image. Equivalent to Width x
Height.

Orientation Returns the orientation of the image.

ImageSize Returns the total size in bytes of the image, with or without
padding.

LineSize Returns the size in bytes of a line in the image, with or without
padding.

PixelSize Returns the size of a pixel in the image, with or without padding.

LinePadding Gets or sets the current amount of padding in bytes to append to

(Get/Set) each line of the image.

PixelPadding Gets or sets the current amount of padding in bytes to append to

(Get/Set) each pixel of the image.

CopyPixels Copies the image pixels to a specified memory buffer, using the
current color type, line padding, and pixel padding.

ToBitmap Returns a copy of the image as a .Net Bitmap object. (.Net only)

toNSImage Returns a copy of the image as an ObjC NSImage object. (ObjC

only)

53

PHASEONE

3.11 ICaptureObject (P1CaptureCore_CaptureObject)

The ICaptureObject base class provides a common set of functionality that is shared between
the main capture objects of CaptureCore: ICaptureProvider, ICamera and ICapturelmage. It
does not exist as an object on its own, and is only accessible via a derived class.

ICaptureObject inherits from IErrorSource and IEventSource. It is a parent to ICapability
(ICapabilityList) and IProperty (IPropertyList) objects.

Members

Id Returns an unique 1D representing the 1CaptureObject instance.

GetCapabilityList | Returns a reference to a ICapabilityList object containing all

ICapability objects for this ICaptureObject object.

GetPropertyList Returns a reference to a IPropertyList object containing all IProperty
objects for this ICaptureObject object.

GetCapability Returns a reference to an ICapability object for this ICaptureObject
object, with a specified ID.

GetProperty Returns a reference to an IProperty object for this ICaptureObject

object, with a specified ID.

Inherited from IErrorSource

GetError
object.

Returns the next IErrorObject object, if any, for the ICaptureObject

Inherited from IEventSource

AddReceiver Attaches an IEventReceiver object to receive events (IEventObject)
from the ICaptureObject object.

RemoveReceiver Detaches a previously attached IEventReceiver object so that it no
longer receives events (IEventObject) from the 1CaptureObject
object.

Events

General (EnumCaptureObjectEventId)

kCaptureObjectEvent CapabilityChange

A capability’s value has changed. The first
argument is the 1D of the changed capability.

kCaptureObjectEvent PropertyChange

A property’s value has changed. The first
argument is the 1D of the changed property.

kCaptureObjectEvent SettingDescriptorChange

A property’s setting descriptor has changed. The
first argument is the ID of the changed property.

kCaptureObjectEvent PropertyAdded

One or more new properties have been added. The
argument list contains the IDs of the new
properties.

kCaptureObjectEvent PropertyRemoved

One or more properties have been removed. The
argument list contains the IDs of the removed
properties.

kCaptureObjectEvent CapabilityAdded

One or more new capabilities have been added.
The argument list contains the 1Ds of the new
capabilities.

54

PHASEONE

One or more capabilities have been removed. The
kCaptureObjectEvent_CapabilityRemoved argument list contains the 1Ds of the removed
capabilities.
3111 Id
Id returns an unique ID representing the ICaptureObject instance.
Syntax
.Net

C# uint Id { get; }

property System::UInt32 Id

++
¢ { System::UInt32 get(); }

VB ReadOnly Property Id As Ulnteger

ObjC

- (uint32_t) id

Return Value

A number that uniquely identifies the ICaptureObject instance.

Remarks

No two instances of ICaptureObject classes will have the same ID and it doesn’t change after
the object is created.

3.11.2 GetCapabilityList

GetCapabilityList returns a reference to a ICapabilityList object containing all 1Capability
objects for this ICaptureObject object.

Syntax
.Net

C# ICapabilityList GetCapabilityList()

C++ | ICapabilityList”® GetCapabilityList ()

VB Function GetCapabilityList As ICapabilityList

ObjC

- (PlCaptureCore CapabilityList *) getCapabilityList

Return Value

An ICapabilityList object containing all the ICapability objects for the object. A NULL
reference or an empty list is returned if there are no defined capabilities for the object.

Remarks

The returned ICapabilityList will be a copy of an internal capability list, if the number of
capabilities of the 1CaptureObject object can change dynamically. This allows the returned
list to be used without any problems that may arise from dynamic changes — only the internal
list is changed dynamically. However, this is very unusual and generally the capability list
will be the same on each call to GetCapabilityList. Nevertheless, applications should avoid
caching the returned ICapabilityList object, and retrieve a new list when it is needed.

55

PHASEONE

3.11.3 GetPropertyList

GetPropertyList returns a reference to a IPropertyList object containing all IProperty objects
for this ICaptureObject object.

Syntax
.Net

C# IPropertyList GetPropertyList ()

C++ | IPropertyList” GetPropertyList ()

VB Function GetPropertylList As IPropertyList

ObjC

- (PlCaptureCore PropertyList *) getPropertyList

Return Value

An [PropertyList object containing all the IProperty objects for the object. A NULL
reference or an empty list is returned if there are no defined properties for the object.

Remarks

The returned IPropertyList will be a copy of an internal property list, if the number of
properties of the 1CaptureObject object can change dynamically. This allows the returned list
to be used without any problems that may arise from dynamic changes — only the internal list
is changed dynamically. Applications should avoid caching the returned IPropertyList object,
and retrieve a new list when it is needed.

3.11.4 GetCapability

GetCapability returns a reference to an ICapability object for this ICaptureObject object,
with a specified ID.

Syntax
.Net

C# ICapability GetCapability(uint capabilityID)

C++ | ICapability” GetCapability(System::UInt32 capabilityID)

VB Function GetCapability(capabilityID As Ulnteger) As ICapability

ObjC

- (PlCaptureCore Capability *) getCapability: (uint32 t) capabilityID

Parameters

capabilitylD The capability ID of the ICapability object to return. Capability
IDs are specific for each class derived from ICaptureQObject.
See Capability Reference for possible capability IDs.

Return Value

An ICapability object with the specified capability ID, if it is present in the capability list for
the object. If the specified capability is not present, then a NULL reference is returned.

Remarks

GetCapability is equivalent to calling GetCapabilityList, and calling the ICapabilityList
method GetCapabiltity, which iterates through the capability list searching for the specified
capability ID.

56

PHASEONE

3.11.5 GetProperty

GetProperty returns a reference to an IProperty object for this ICaptureObject object, with a
specified ID.

Syntax
.Net

C# IProperty GetProperty(uint propertyID)

C++ | IProperty” GetProperty(System::UInt32 propertyID)

VB Function GetProperty(propertyID As Ulnteger) As IProperty

ObjC

- (PlCaptureCore Property *) getProperty: (uint32 t) propertyID

Parameters

propertylD The property 1D of the IProperty object to return. Property IDs
are specific for each class derived from ICaptureObject. See
Property Reference for possible property IDs.

Return Value

An IProperty object with the specified property ID, if it is present in the property list for the
object. If the specified property is not present, then a NULL reference is returned.

Remarks

GetProperty is equivalent to calling GetPropertyList, and calling the IPropertyList method
GetProperty, which iterates through the property list searching for the specified property ID.
3.11.6 KkCaptureObjectEvent_CapabilityChange

This event is posted by the 1CaptureObject object when an ICapability object, owned by the
ICaptureObject object, has changed in some way.

Arguments
0 The capability 1D of the ICapability object that has changed.

3.11.7 kCaptureObjectEvent_PropertyChange

This event is posted by the ICaptureObject object when an IProperty object, owned by the
ICaptureObject object, has changed in some way.

Arguments
0 The property ID of the IProperty object has changed.

3.11.8 kCaptureObjectEvent_SettingDescriptorChange

This event is posted by the ICaptureObject object when the ISettingDescriptor object of an
IProperty object, owned by the ICaptureObject, has changed in some way.

Arguments

0 The property ID of the IProperty object that owns the ISettingDescriptor that
has changed.

S7

PHASEONE

3.11.9 KkCaptureObjectEvent PropertyAdded

This event is posted by the ICaptureObject object when one or more properties have been
added to the property list.

Arguments
0 to NumberOfArguments-1 The property 1Ds of the new IProperty objects.

3.11.10 kCaptureObjectEvent_PropertyRemoved

This event is posted by the ICaptureObject object when one or more properties have been
removed from the property list.

Arguments
0 to NumberOfArguments-1 The property 1Ds of the removed IProperty objects.

3.11.11 kCaptureObjectEvent_CapabilityAdded

This event is posted by the 1CaptureObject object when one or more capabilities have been
added to the capability list.

Arguments
0 to NumberOfArguments-1 The property 1Ds of the new ICapability objects.

3.11.12 kCaptureObjectEvent CapabilityRemoved

This event is posted by the 1CaptureObject object when one or more capabilities have been
removed from the capability list.

Arguments
0 to NumberOfArguments-1 The property 1Ds of the removed ICapability objects.

58

PHASEONE

3.12 ICapabilityList (P1CaptureCore_CapabilityList)

The ICapabilityList class is a list container for ICapability objects. It is a child object of
ICaptureObject, and inherits from IChildObject and IObjectList.

Members

GetCapability | Returns a reference to an ICapability object in the list with the specified
ID.

Dump Dumps debug information for all capabilities in the list to a debug monitor

or to a log file specified through the ICaptureCore object.

Inherited from IChildObject

Parent Returns the parent ICaptureObject object of this object.

Inherited from IObjectList

Size Returns the number of ICapability items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first ICapability item in the list.

Last Returns a reference to the last ICapability item in the list.

Next Returns a reference to the next ICapability item in the list following a
specified ICapability item already in the list.

Previous Returns a reference to the previous ICapability item in the list preceding a
specified ICapability item already in the list.

Insert Inserts a new item in front of another specified ICapability item in the list.
Requires insert access rights.

Remove Removes a specified 1Capability item from the list. Requires remove
access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess Returns the access rights for this list as a bitmask of EnumListAccess
values.

HasAccess Returns true if the list allows the specified access rights.

3.12.1 GetCapability
GetCapability returns a reference to an ICapability object in the list with the specified ID.

Syntax
Net

C# ICapability GetCapability(uint capabilityID)

C++ | ICapability” GetCapability(System::UInt32 capabilityID)

VB Function GetCapability(capabilityID As Ulnteger) As ICapability

ObjC

- (PlCaptureCore Capability *) getCapability: (uint32 t) capabilityID

Parameters
capabilitylD The capability 1D of the 1Capability object to return.

59

PHASEONE

Return Value

An ICapability object with the specified capability 1D, if it is present in the capability list. If
the specified capability is not present, then a NULL reference is returned.

3.12.2 Dump

Dump dumps debug information for all capabilities in the list to a debug monitor and to a log
file specified through the 1CaptureCore object.

Syntax
Net

C# void Dump ()

C++ | void Dump ()

VB Sub Dump

ObjC

- (void) dump

Remarks

Dump calls the ICapability method Dump on each ICapability object in the list. This outputs
a textual description of each capability in the list to the platform’s debug monitor, and to a
log file, if one has been setup via the LogMsgFileName method of ICaptureCore.

60

PHASEONE

3.13 ICapability (P1CaptureCore_Capability)

Objects of the ICapability class each represent a single capability of their parent
ICaptureObject. A capability is a read-only value that tells something about what an instance
of an ICaptureQObject is capable of doing. Most capabilities are Boolean values, but they may
also be numbers, strings and other value types. Each capability has an unique ID; see the
Capability Reference section for possible capabilities for each ICaptureObject derived class.

Capabilities are different than properties (see IProperty). Capabilities tell what an object can
do, whereas properties provide settings and information about the object. Capabilities are
normally used for determining if certain methods can be called, or enabling/disabling some
functionality. They are generally only used to control the logic of an application, and are not
directly presented to a user. Properties are often settings or information about an object, and
are often presented to a user, in addition to possibly controlling the logic of an application.

Capabilities can change dynamically in response to method calls or events. A capability
change event (kCaptureObjectEvent _CapabilityChange) is posted by the parent
ICaptureObject whenever a capability changes.

ICapability is a child object of ICaptureObject, and inherits from IChildObject and
IValueRead.

Members

Id Returns the unique capability ID for this capability.

Name Returns a string name for the capability.

Unit Returns a string containing an optional unit for the capability.

Dump Dumps debug information for the capability to a debug monitor and

to a log file specified through the ICaptureCore object.

Inherited from IChildObject

Parent Returns the parent ICaptureObject object of this object.

Inherited from IValueRead

ValueType Returns the value type (Boolean, integer, string, etc) of the object.
IsUndefined Returns true if the object’s value is undefined.
GetValue Gets the value of the object if the type of the object and the type

passed to GetValue are compatible. One can always get a string
representation for all value types. GetValue is available on platforms
that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed
integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit unsigned
integer (or enumeration).

GetValueIntod Returns the value of the object if its value type is a 64-bit signed
integer.

61

PHASEONE

GetValueUInt64 Returns the value of the object if its value type is a 64-bit unsigned
integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit floating
point.

GetValueString Returns the value of the object if its value type is a string, or a string
representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration
(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit
signed integer).

GetValuePointFloat | Returns the value of the object if its value type is a point (64-bit
floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit
signed integer).

GetValueAreaFloat | Returns the value of the object if its value type is an area (64-bit
floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit
signed integer).

GetValueRectFloat | Returns the value of the object if its value type is a rectangle (64-bit
floating point).

Compare Compares this object’s value to another object of the same value
type, returning a signed integer representing if this object is less
than, greater than or equal to the other object.

3.13.1 Id

Id returns the unique capability ID for this ICapability object.

Syntax

.Net

C# uint Id { get; }

Cit property System::UInt32 Id

{ System::UInt32 get(); }

VB ReadOnly Property Id As Ulnteger

ObjC

| - (uint32_t) id

Return Value

A number representing the unique capability ID of the object. See Capability Reference for
further details about capability IDs for different classes.

Remarks

The capability ID for an ICapability object doesn’t change after the object is created.

62

PHASEONE

3.13.2 Name

Name returns a display name string for the capability. The default name is vendor specific,
but alternative names can also be returned.

Syntax
.Net

string Name { get; }
ci g g

string NameEx (EnumCaptureCoreName which)

property System::String” Name
C++ { System::String” get(); }

System: :String” NameEx (EnumCaptureCoreName which)

VB ReadOnly Property Name As String

Function NameEx (EnumCaptureCoreName which) As String

ObjC

- (NSString *) name

- (NSString *) name: (EnumCaptureCoreName) which

Parameters

which An EnumCaptureCoreName value specifying which name to
return. If the which parameter is not specified, the returned
name is vendor specific (CaptureCoreName_VendorSpecific).

Return Value

A string containing a display name for the capability. The specific name returned is specified
by the optional parameter which. The default name is vendor specific.

Remarks

[.Net only] The method that takes the parameter which is called NameEx, to avoid conflicting
with the Name property.

There are several possible names for a capability: vendor specific, long or short. Vendor
specific names are defined by the manufacturer associated with the object. Long and short
names are defined by Phase One and are generally common for all objects. Short names are
guaranteed to be 20 characters or less. The names for each name type may be the same.

The names for an ICapability object do not change after the object is created.

3.13.3 Unit
Unit returns a string containing an optional unit for the capability.

Syntax
.Net

C# string Unit { get; }

property System::String” Unit

++
C { System::String” get(); }

VB ReadOnly Property Unit As String

ObjC

‘— (NSString *) unit

63

PHASEONE

Return Value

A string containing an optional display unit for the capability, such as degrees, Celsius,
pixels, and so on. The string can be empty if no unit is defined.

Remarks
The unit for an 1Capability object doesn’t change after the object is created.

3.13.4 Dump

Dump dumps debug information for the capability to a debug monitor and to a log file
specified through the ICaptureCore object.

Syntax
.Net

C# void Dump ()

C++ | void Dump ()

VB Sub Dump

ObjC

| - (void) dump

Remarks

Dump outputs a text message describing the Name and value of the 1Capability object. The
message is output to the platform’s debug monitor, and written to a log file, if one has been
setup via the LogMsgFileName method of 1CaptureCore.

64

PHASEONE

3.14

IPropertyList (P1CaptureCore PropertyList)

The IPropertyList class is a list container for IProperty objects. It is a child object of
ICaptureObject, and inherits from IChildObject and IObjectList.

Members

GetProperty Returns a reference to an IProperty object in the list with the specified
ID.

RestoreDefault | Resets all properties in the list to their default value, if they have a default
value.

Refresh Reloads all property values from their data source. Refresh is not
necessary for retrieving a property’s value. This method can affect
performance, so it should only be called when a user specifically requests
a refresh or manual synchronization.

Dump Dumps debug information for all properties in the list to a debug monitor

or to a log file specified through the ICaptureCore object.

Inherited from IChildObject

Parent

Returns the parent ICaptureObject object of this object.

Inherited from IObjectList

Size Returns the number of IProperty items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first IProperty item in the list.

Last Returns a reference to the last IProperty item in the list.

Next Returns a reference to the next IProperty item in the list following a
specified IProperty item already in the list.

Previous Returns a reference to the previous IProperty item in the list preceding a
specified IProperty item already in the list.

Insert Inserts a new item in front of another specified IProperty item in the list.
Requires insert access rights.

Remove Removes a specified IProperty item from the list. Requires remove
access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess Returns the access rights for this list as a bitmask of EnumListAccess
values.

HasAccess

Returns true if the list allows the specified access rights.

3.14.1 GetProperty
GetProperty returns a reference to an IProperty object in the list with the specified ID.

Syntax
.Net

C# ‘IProperty GetProperty(uint propertyID)

65

PHASEONE

C++ | IProperty” GetProperty(System::UInt32 propertyID)

VB Function GetProperty(propertyID As Ulnteger) As IProperty

ObjC

- (PlCaptureCore Property *) getProperty: (uint32 t) propertyID

Parameters

propertylD The property 1D of the IProperty object to return.

Return Value

An IProperty object with the specified property ID, if it is present in the property list. If the
specified property is not present, then a NULL reference is returned.

3.14.2 RestoreDefault

RestoreDefault resets all properties in the list to their default value, if they have a default
value.

Syntax
.Net

C# voilid RestoreDefault ()

C++ | void RestoreDefault ()

VB Sub RestoreDefault

ObjC

- (void) restoreDefault

Remarks

RestoreDefault calls the IProperty method RestoreDefault on each IProperty object in the
list.

3.14.3 Refresh

Refresh reloads all property values from their data source. Refresh is not necessary for
retrieving a property’s value. This method can affect performance, so it should only be called
when a user specifically requests a refresh or manual synchronization.

Normally, properties are automatically synchronized with their source. However, this is not
always the case. In the event that properties fall out of synchronization with the source/device
for the property, this method can be used to reload their values from the source/device.

Syntax
Net

C# void Refresh ()

C++ | void Refresh ()

VB Sub Refresh

ObjC

- (void) refresh

Remarks
Refresh calls the IProperty method Refresh on each IProperty object in the list.

66

PHASEONE

A call to Refresh may take some time, and is only necessary if property objects are out of
synchronization with their data source. Since this is unusual, it is recommended to only call
this method, if the user requests synchronization manually.

3.14.4 Dump

Dump dumps debug information for all properties in the list to a debug monitor or to a log
file specified through the 1CaptureCore object.

Syntax
Net

C# void Dump ()

C++ | void Dump ()

VB Sub Dump

ObjC

- (void) dump

Remarks

Dump calls the IProperty method Dump on each IProperty object in the list. This outputs a
textual description of each property in the list to the platform’s debug monitor, and to a log
file, if one has been setup via the LogMsgFileName method of ICaptureCore.

67

PHASEONE

3.15 IProperty (P1CaptureCore_Property)

Objects of the IProperty class each represent a single property of their parent ICaptureObject.
A property represents a setting or some other information about an instance of an
ICaptureObject, and may be a number, string, Boolean, or other value type. Each property
has an unique ID; see the Property Reference section for possible properties for each
ICaptureObject derived class.

Properties are different than capabilities (see ICapability). Capabilities tell what an object can
do, whereas properties provide settings and information about the object, and are often
presented to a user, in addition to possibly controlling the logic of an application.

Properties can be read-only or writeable. In addition, they may have an optional setting
descriptor (see 1SettingDescriptor) describing the valid range or values of the property.

Properties can change dynamically in response to method calls or events. Not only can their
value change, but also their setting descriptor, and whether they are read-only or writeable. A
property or setting descriptor change event (kCaptureObjectEvent PropertyChange or
kCaptureObjectEvent_SettingDescriptorChange) is posted by the parent ICaptureObject
whenever the property or setting descriptor for a property changes.

IProperty is a child object of 1CaptureObject, and inherits from IChildObject, IValueRead
and IValueWrite. It is a parent to ISettingDescriptor and 1SettingValue (ISettingValueList)
objects.

Members

Id Returns the unique property ID for this property.

Name Returns a string name for the property.

Unit Returns a string containing an optional unit for the property.

GetSetttingDescriptor | Returns an optional ISettingDescriptor object describing the
values and/or range that the property can be set to.

IsDisabled Returns true if the property is currently disabled, that is that its
value cannot be written to or read from.

IsDefaultvalue Returns true if the property’s current value is the same as its
default value. It always returns false if it does not have a default
value.

RestoreDefault Sets the property to its default value, if it has one.

Refresh Reloads the property’s value from its data source. Refresh is not

necessary for retrieving the property value. This method can
affect performance, so it should only be called when a user
specifically requests a refresh or manual synchronization.

Dump Dumps debug information for the property to a debug monitor
and to a log file specified through the ICaptureCore object.

Inherited from IChildObject

Parent Returns the parent ICaptureObject object of this object.

Inherited from IValueRead

68

PHASEONE

ValueType Returns the value type (Boolean, integer, string, etc) of the
object.

IsUndefined Returns true if the object’s value is undefined.

GetValue Gets the value of the object if the type of the object and the type
passed to GetValue are compatible. One can always get a string
representation for all value types. GetValue is available on
platforms that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValuelnt32 Returns the value of the object if its value type is a 32-bit signed
integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit
unsigned integer (or enumeration).

GetValueInté6d Returns the value of the object if its value type is a 64-bit signed
integer.

GetvValueUInt64 Returns the value of the object if its value type is a 64-bit
unsigned integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit
floating point.

GetValueString Returns the value of the object if its value type is a string, or a
string representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration
(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit
signed integer).

GetValuePointFloat Returns the value of the object if its value type is a point (64-bit
floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit
signed integer).

GetValueAreaFloat Returns the value of the object if its value type is an area (64-bit
floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-
bit signed integer).

GetValueRectFloat Returns the value of the object if its value type is a rectangle (64-
bit floating point).

Compare Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less
than, greater than or equal to the other object.

Inherited from IValueWrite

IsReadOnly

Returns true if the object is a read-only object. Set value
methods may not be called on a read-only object.

69

PHASEONE

Setvalue Sets the value of the object if the type of the object and the type
passed to SetValue are compatible. SetValue is available on
platforms that support overloading.

SetValueBool Sets the value of the object if its value type is a Boolean.

SetValueInt32 Sets the value of the object if its value type is a 32-bit signed
integer (or enumeration).

SetValueUInt32 Sets the value of the object if its value type is a 32-bit unsigned
integer (or enumeration).

SetValuelInt64 Sets the value of the object if its value type is a 64-bit signed
integer.

SetValueUInt64 Sets the value of the object if its value type is a 64-bit unsigned
integer.

SetValueFloat64 Sets the value of the object if its value type is a 64-bit floating
point.

SetValueString Sets the value of the object if its value type is a string.

SetValueEnum Sets the value of the object if its value type is an enumeration
(32-bit signed integer).

SetValuePoint Sets the value of the object if its value type is a point (32-bit
signed integer).

SetValuePointFloat Sets the value of the object if its value type is a point (64-bit
floating point).

SetValueArea Sets the value of the object if its value type is an area (32-bit
signed integer).

SetValueAreaFloat Sets the value of the object if its value type is an area (64-bit
floating point).

SetValueRect Sets the value of the object if its value type is a rectangle (32-bit
signed integer).

SetValueRectFloat Sets the value of the object if its value type is a rectangle (64-bit
floating point).

3.15.1 Id

Id returns the unique property ID for this IProperty object.

Syntax

.Net

C# uint Id { get;

C++

property System::UInt32 Id
{ System::UInt32 get(); }

VB | ReadOnly Property Id As Ulnteger

ObjC

| - (uint32_t) id

70

PHASEONE

Return Value

A number representing the unique property ID for this object. See Property Reference for
further details about property 1Ds for different classes.

Remarks
The property ID for an IProperty object doesn’t change after the object is created.

3.15.2 Name

Name returns a display name string for the property. The default name is vendor specific, but
alternative names can also be returned.

Syntax
Net
i string Name { get; }
string NameEx (EnumCaptureCoreName which)
property System::String” Name
C++ { System::String” get(); }
System: :String” NameEx (EnumCaptureCoreName which)
ReadOnly Property Name As String
VB Function NameEx (EnumCaptureCoreName which) As String
ObjC
- (NSString *) name
- (NSString *) name: (EnumCaptureCoreName) which
Parameters
which An EnumCaptureCoreName value specifying which name to

return. If the which parameter is not specified, the returned
name is vendor specific (CaptureCoreName_VendorSpecific).

Return Value

A string containing a display name for the property. The specific name returned is specified
by the optional parameter which. The default name is vendor specific.

Remarks

[.Net only] The method that takes the parameter which is called NameEx, to avoid conflicting
with the Name property.

There are several possible names for a property: vendor specific, long or short. Vendor
specific names are defined by the manufacturer associated with the object. Long and short
names are defined by Phase One and are generally common for all objects. Short names are
guaranteed to be 20 characters or less. The names for each name type may be the same.

The names for an IProperty object do not change after the object is created.

3.15.3 Unit
Unit returns a string containing an optional unit for the property.

Syntax
.Net

‘C# ‘string Unit { get; }

71

PHASEONE

property System::String” Unit

C++ .
{ System::String” get(); }

VB ReadOnly Property Unit As String

ObjC

- (NSString *) unit

Return Value

A string containing an optional display unit for the property, such as degrees, Celsius, pixels,
and so on. The string can be empty if no unit is defined.

Remarks
The unit for an IProperty object doesn’t change after the object is created.

3.15.4 GetSettingDescriptor

GetSettingDescriptor returns an optional ISettingDescriptor object describing the values
and/or range that the property can be set to.

Syntax
Net

C# ISettingDescriptor GetSettingDescriptor ()

C++ | ISettingDescriptor” GetSettingDescriptor ()

VB Function GetSettingDescriptor As ISettingDescriptor

ObjC

- (PlCaptureCore SettingDescriptor *) getSettingDescriptor

Return Value

A reference to a ISettingDescriptor object for the IProperty object. A NULL reference is
returned if no setting descriptor is defined for the IProperty object.

Remarks

If GetSettingDescriptor returns a NULL reference, then no setting descriptor is defined for
the property. If the property is not read-only, this means that it can be set to any legal value
for the value type of the property.

3.15.5 IsDisabled

IsDisabled returns true if the property is currently disabled, that is that its value cannot be
written to or read from.

Properties can become disabled if the current state of the parent object does not allow the
property to be set (or read). A property’s disabled state can change at any moment. If it does
change a kCaptureObjectEvent_PropertyChange event is sent by the parent object.

Syntax
.Net

C# bool IsDisabled()

C++ | bool IsDisabled()

VB Function IsDisabled As Boolean

ObjC

| - (BoOL) isDisabled

72

PHASEONE

Return Value

True if the property is currently not accessible or not available. The return value can change
instantaneously or depend upon the values of other properties.

Remarks

A disabled property is automatically read-only (IsReadOnly will return true). However,
unlike a read-only property, a disabled property can’t generally be read from, and may even
throw an exception if its value is read.

3.15.6 IsDefaultValue

IsDefaultValue returns true if the property’s current value is the same as its default value. It
always returns false if it does not have a default value. A property’s default value is defined
in its setting descriptor.

Syntax
Net

C# bool IsDefaultValue ()

C++ | bool IsDefaultValue ()

VB Function IsDefaultValue As Boolean

ObjC

- (BOOL) isDefaultValue

Return Value
True if there is a default value and the property value is the same as the default.

3.15.7 RestoreDefault

RestoreDefault sets the property to its default value, if it has a one. A property’s default value
is defined in its setting descriptor.

Syntax
Net

C# void RestoreDefault ()

C++ | void RestoreDefault ()

VB Sub RestoreDefault

ObjC

- (void) restoreDefault

Remarks

RestoreDefault tests if there is an ISettingDescriptor for the property, and retrieves the
default value by calling the ISettingDescriptor method Default. If there is not
ISettingDescriptor or the descriptor does not have a default, then RestoreDefault does
nothing.

3.15.8 Refresh

Refresh reloads the property’s value from its data source. Refresh is not necessary for
retrieving the property value. This method can affect performance, so it should only be called
when a user specifically requests a refresh or manual synchronization.

73

PHASEONE

Normally, properties are automatically synchronized with their source. However, this is not
always the case. In the event that a property falls out of synchronization with the
source/device for the property, this method can be used to reload its value from the
source/device.

Syntax
Net

C# void Refresh ()

C++ | void Refresh ()

VB Sub Refresh

ObjC

- (void) refresh

Remarks

A call to Refresh may take some time, and is only necessary if the property object is out of
synchronization with its data source. Since this is unusual, it is recommended to only call this
method, if the user requests synchronization manually.

3.15.9 Dump

Dump dumps debug information for the property to a debug monitor and to a log file
specified through the ICaptureCore object.

Syntax
.Net

Ct# void Dump ()

C++ | void Dump ()

VB Sub Dump

ObjC

- (void) dump

Remarks

Dump outputs a text message describing the Name and value of the IProperty object. The
message is output to the platform’s debug monitor, and written to a log file, if one has been
setup via the LogMsgFileName method of 1CaptureCore.

74

PHASEONE

3.16 ISettingDescriptor (P1CaptureCore_SettingDescriptor)

The 1SettingDescriptor class provides optional information about the possible values that a
specific IProperty object can be set to. It can describe an IProperty object’s valid range
and/or provide a list of values, as well as describing a default value.

ISettingDescriptor objects are read-only objects, however their values can change
dynamically, in response to method calls or events. A setting descriptor change event
(kCaptureObjectEvent_SettingDescriptorChange) is sent by the ICaptureObject object that
is indirectly the parent of the ISettingDescriptor object, whenever the setting descriptor
changes.

An application can use the methods of ISettingDescriptor to determine which Ul control
could be appropriate for controlling the value of an IProperty object. If there is no
ISettingDescriptor object for an IProperty object, or the ISettingDescriptor object does not
have a value list (see HasValueList and GetValueList), then an edit control is usually
appropriate to display and edit a property’s value. If the ISettingDescriptor object does have a
value list, then there are generally two options. If the IsValueListSelectOnly method returns
true, indicating that only values from the value list may be selected, then a drop-down list
control is useful. If IsValueListSelectOnly returns false, a combination edit/drop-down list
control will allow a user to both select values and edit values.

IProperty objects can also have a default value and a range limit. If there is no range limit,
then all values are considered in the range. An application can test if a value is valid for a
specific IProperty object by calling the method ValidateValue, which throws an error if the
value is not a valid setting for the IProperty object. Note that an IProperty object calls
ValidateValue automatically whenever the application sets it to a new value.

ISettingDescriptor is a child object of IProperty, and inherits from IChildObject. It is a parent
to 1SettingValue (ISettingValueList) objects.

Members

ValueType Returns the value type (Boolean, number, string, etc) of the
ISettingDescriptor object. This is always the same as the parent
IProperty object’s value type.

HasDefault Returns true if the parent IProperty object has a default value. If
true, then Default can be used to retrieve the default value.

Default Returns the default value for the parent IProperty object, if it has
one.

HasRange Returns true if the parent IProperty object has a range limit. If
true, then RangeMinimum and RangeMaximum can be used to
retrieve the minimum and maximum range values.

RangeMinimum Returns the minimum range value for the parent IProperty
object, if it has one.

RangeMaximum Returns the maximum range value for the parent IProperty
object, if it has one.

HasValueList Returns true if there is a list of values that the parent IProperty
object can be set to. If true, then GetValueList can be used to
retrieve the list.

75

PHASEONE

IsvalueListSelectOnly | Returns true if the parent IProperty object can only be set to
values from the list returned by GetValueList.

GetValueList Returns an optional list of values that the parent IProperty object
can be set to.

ValidatevValue Tests whether an 1ValueRead object has a value that is valid for
the parent IProperty object, and throws an exception if it is not.
A value is valid if it is in range or in the value list, if any.

Inherited from IChildObject

Parent Returns the parent IProperty object of this object.

3.16.1 ValueType

ValueType returns the value type (Boolean, number, string, etc) of the ISettingDescriptor
object. This is always the same as the parent IProperty object’s value type.

Syntax
Net

C# EnumValueType ValueType { get; }

property EnumValueType” ValueType

++
c { EnumValueType” get(); }

VB ReadOnly Property ValueType As EnumValueType

ObjC

- (EnumValueType) valueType

Return Value

An EnumValueType enumeration value that indicates which value type the 1SettingDescriptor
and its parent IProperty object are.

Remarks

All 1SettingValue child objects of an ISettingDescriptor object have the same value type as
the ISettingDescriptor object.

The value type of an ISettingDescriptor object doesn’t change after the object is created.

3.16.2 HasDefault

HasDefault returns true if the parent IProperty object has a default value. If true, then Default
can be used to retrieve the default value.

Syntax
.Net

C# bool HasDefault ()

C++ | bool HasDefault ()

VB Function HasDefault As Boolean

ObjC

- (BOOL) hasbDefault

Return Value
True if the I1SettingDescriptor object contains a default value for the parent IProperty object.

76

PHASEONE

3.16.3 Default
Default returns the default value for the parent IProperty object, if it has one.

Syntax
Net

C# ISettingValue Default ()

C++ | ISettingValue” Default ()

VB Function Default As ISettingValue

ObjC

- (PlCaptureCore SettingValue *) default

Return Value

A reference to an ISettingValue object that represents the default value for the parent
IProperty object. A NULL reference is returned if the property doesn’t have a default value.

Remarks
An application can call HasDefault to test if there is a default value.

3.16.4 HasRange

HasRange returns true if the parent IProperty object has a range limit. If true, then
RangeMinimum and RangeMaximum can be used to retrieve the minimum and maximum
range values.

Syntax
.Net

C# bool HasRange ()

C++ | bool HasRange ()

VB Function HasRange As Boolean

ObjC

- (BOOL) hasRange

Return Value

True if the ISettingDescriptor object has a range limit, that is it contains a minimum and
maximum range value for the parent IProperty object.

3.16.5 RangeMinimum

RangeMinimum returns the minimum range value for the parent IProperty object, if it has
one.

Syntax
.Net

C# ISettingValue RangeMinimum ()

C++ | ISettingValue”™ RangeMinimum ()

VB Function RangeMinimum As ISettingValue

ObjC

‘— (PlCaptureCore SettingValue *) rangeMinimum

77

PHASEONE

Return Value

A reference to an ISettingValue object that represents the minimum value for the parent
IProperty object. A NULL reference is returned if the property doesn’t have a range limit.

Remarks

If there is a range limit, then both the minimum and maximum range values will be defined.
An application can call HasRange to test if there is a range limit.

3.16.6 RangeMaximum

RangeMaximum returns the maximum range value for the parent IProperty object, if it has
one.

Syntax
Net

C# ISettingValue RangeMaximum ()

C++ | ISettingValue” RangeMaximum ()

VB Function RangeMaximum As ISettingValue

ObjC

- (PlCaptureCore SettingValue *) rangeMaximum

Return Value

A reference to an ISettingValue object that represents the maximum value for the parent
IProperty object. A NULL reference is returned if the property doesn’t have a range limit.

Remarks

If there is a range limit, then both the minimum and maximum range values will be defined.
An application can call HasRange to test if there is a range limit.

3.16.7 HasValuelList

HasValueList returns true if there is a list of values that the parent IProperty object can be set
to. If true, then GetValueList can be used to retrieve the list.

Syntax
.Net

C# bool HasValueList ()

C++ | bool HasValueList ()

VB Function HasValueList As Boolean

ObjC

- (BOOL) hasValueList

Return Value

True if the ISettingDescriptor object contains a list of values that the parent IProperty object
can be set to.

Remarks

If HasValueList returns true, the method IsValueListSelectOnly can be used to determine if
the list is select-only or not.

78

PHASEONE

3.16.8 IsValueListSelectOnly

IsValueListSelectOnly returns true if the parent IProperty object can only be set to values
from the list returned by GetValuelList.

Syntax
.Net

C# bool IsValuelListSelectOnly ()

C++ | bool IsValuelListSelectOnly ()

VB Function IsValueListSelectOnly As Boolean

ObjC

- (BOOL) isValueListSelectOnly

Return Value

True if the ISettingDescriptor object contains a list of values that the parent IProperty object
can be set to, and the IProperty object can only be set to values from this list.

Remarks

A list of values can be a list of common or suggested values, or it could be a select-only list
of values that must be chosen from. The IsValueListSelectOnly method will return true for the
latter case.

3.16.9 GetValuelList

GetValueList returns an optional list of values that the parent IProperty object can be set to.

Syntax
Net

C# ISettingValuelList GetValueList ()

C++ | ISettingValuelList” GetValuelList ()

VB Function GetValueList As ISettingValueList

ObjC

- (PlCaptureCore SettingValueList *) getValuelList

Return Value

A reference to an ISettingValueList object that contains ISettingValue objects that represent
values that the parent IProperty object can be set to. A NULL reference or an empty list is
returned if no values are defined.

Remarks

The list returned by GetValueList could be either a list of suggested values or a list of select-
only values. If IsValueListSelectOnly returns true, the list is a select-only value list and the
parent IProperty object can only be set to values from the list. If IsValueListSelectOnly
returns false, then IProperty object can be set to any value that is in range as well as those in
the value list. In this case, the value list is only a list of suggested or common values.

3.16.10 ValidateValue

ValidateValue tests whether an IValueRead object has a value that is valid for the parent
IProperty object, and throws an exception if it is not. A value is valid if it is in range or in the
value list, if any.

79

PHASEONE

Syntax
Net

C# void ValidateValue(IValueRead value)

C++ | void ValidateValue(IValueRead” value)

VB Sub ValidateValue(value As IValueRead)

ObjC

- (void) validateValue: (PlCaptureCore ValueRead *) value

Parameters

value A reference to an IValueRead object whose value will be tested
for validity.

Remarks

An exception is thrown if value is not a valid setting for the parent IProperty object.
Typically this is an out of range exception.

If the value type of value is not the same as value type of the ISettingDescriptor object (or not
compatible with it), then value is invalid and an exception is thrown.

If the 1SettingDescriptor has a value list and value matches an entry in the list, then value is
always valid and no further tests are performed. If it does not match an entry in the list and
the list is select-only, then value is invalid and an exception is thrown.

If there is a range limit and value is outside the minimum and maximum values, then value is
invalid and an exception is thrown.

80

PHASEONE

3.17

ISettingValueList (P1CaptureCore_SettingValueList)

The ISettingValueList class is a list container for 1SettingValue objects. It is a child object of
ISettingDescriptor, and inherits from 1ChildObject and 10bjectList.

Members

ValueType

Returns the type of values contained within the list. All values in the list are of
the same type.

Inherited from IChildObject

Parent

Returns the parent ISettingDescriptor object of this object.

Inherited from IObjectList

Size Returns the number of ISettingValue items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first 1SettingValue item in the list.

Last Returns a reference to the last ISettingValue item in the list.

Next Returns a reference to the next 1SettingValue item in the list following a
specified ISettingValue item already in the list.

Previous | Returns a reference to the previous ISettingValue item in the list preceding a
specified ISettingValue item already in the list.

Insert Inserts a new item in front of another specified ISettingValue item in the list.
Requires insert access rights.

Remove Removes a specified 1SettingValue item from the list. Requires remove access
rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess | Returns the access rights for this list as a bitmask of EnumListAccess values.

HasAccess

Returns true if the list allows the specified access rights.

3.17.1 ValueType
ValueType returns the type of values contained within the list. All values in the list are of the

same type.

Syntax
.Net

C# EnumValueType ValueType { get; }

property EnumValueType” ValueType

++
C { EnumValueType” get(); }
VB ReadOnly Property ValueType As EnumValueType
ObjC
- (EnumValueType) valueType

Return Value

An EnumValueType enumeration value that indicates the value type of the ISettingValue
objects in the ISettingValueL.ist object.

81

PHASEONE

Remarks
The value type of an ISettingValueL.ist object doesn’t change after the object is created.

82

PHASEONE

3.18 ISettingValue (P1CaptureCore_SettingValue)

The ISettingValue class describes a value that an IProperty object can be set to. 1SettingValue
objects are read-only and owned by a parent ISettingDescriptor object, which is itself owned
by the associated IProperty object.

ISettingValue objects are read-only objects, however their values can change dynamically, in
response to method calls or events. A setting descriptor change event is sent by the
ICaptureObject object that is indirectly the parent of the 1SettingValue object, whenever the
object’s value changes (see the specific class description for the event ID).

ISettingValue is a child object of ISettingDescriptor, and inherits from IChildObject and
IValueRead.

Members
Inherited from IChildObject
Parent Returns the parent ISettingDescriptor object of this object.

Inherited from IValueRead

ValueType Returns the value type (Boolean, integer, string, etc) of the object.
IsUndefined Returns true if the object’s value is undefined.
GetValue Gets the value of the object if the type of the object and the type

passed to GetValue are compatible. One can always get a string
representation for all value types. GetValue is available on platforms
that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed
integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit unsigned
integer (or enumeration).

GetValueInt64 Returns the value of the object if its value type is a 64-bit signed
integer.

GetValueUInt64 Returns the value of the object if its value type is a 64-bit unsigned
integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit floating
point.

GetValueString Returns the value of the object if its value type is a string, or a string
representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration
(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit

signed integer).

GetValuePointFloat | Returns the value of the object if its value type is a point (64-bit
floating point).

83

PHASEONE

GetValueArea Returns the value of the object if its value type is an area (32-bit
signed integer).

GetValueAreaFloat | Returns the value of the object if its value type is an area (64-bit
floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit
signed integer).

GetValueRectFloat | Returns the value of the object if its value type is a rectangle (64-bit
floating point).

Compare Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less
than, greater than or equal to the other object.

84

PHASEONE

3.19 IRootObject (P1CaptureCore_RootObject)

All CaptureCore class interfaces are derived from IRootObject. IRootObject represents
functionality that is common to all CaptureCore classes. Currently IRootObject has no
methods and is a place holder for future functionality. It does not exist as an object on its
own, and is only accessible via a derived class.

85

PHASEONE

3.20 IChildObject (P1CaptureCore_ChildObject)

The IChildObject base class provides common functionality for all CaptureCore objects that
are a child of another CaptureCore object. It does not exist as an object on its own, and is
only accessible via a derived class.

Members

Parent | Returns the parent object of this object.

3.20.1 Parent
Parent returns the parent object of this object.

Syntax
.Net

C# ParentType Parent()

C++ | ParentType” Parent ()

VB Function Parent As ParentType

ObjC

- (PlCaptureCore RootObject *) parent

Return Value

The parent object of this object. A NULL reference is returned if this object currently has no
parent, that is if this object is an orphaned child object.

In development environments where generics or templates are supported, such as .NET, the
type of the parent object matches the immediate parent of this object in the data hierarchy. In
other environments, such as ObjC, the return type is always a IRootObject.

Remarks

If the type of the return value is not directly useful, it can be cast to a valid base class or a
derived class of the parent class. Dynamic or type-safe casting should always be used to
verify that the parent object is actually of the desired class before performing the type cast.

86

PHASEONE

3.21 10DbjectList (P1CaptureCore_ObjectList)

The 10bjectList base class provides a common set of list container functionality for
CaptureCore objects. It does not exist as an object on its own, and is only accessible via a
derived class.

Many object lists in CaptureCore dynamically change in response to method calls or events.
When an 10bjectList object is returned from a method call, it is generally a copy of another
internally maintained object list. Thus it is a snapshot of the state of the internal list at the
time the list was retrieved. This allows the returned list to be used without any problems that
may arise from dynamic changes — only the internal object list is changed dynamically. An
event is generally sent when an internal list changes, and subsequently the application can
retrieve a new copy of the internal list.

Members

Size Returns the number of items in the list.

IsEmpty Returns true if the list is empty.

First Returns a reference to the first item in the list.

Last Returns a reference to the last item in the list.

Next Returns a reference to the next item in the list following a specified item already
in the list.

Previous | Returns a reference to the previous item in the list preceding a specified item
already in the list.

Insert Inserts a new item in front of another specified item in the list. Requires insert
access rights.

Remove Removes an item from the list. Requires remove access rights.

Clear Removes all items from the list. Requires remove access rights.

GetAccess | Returns the access rights for this list as a bitmask of EnumListAccess values.

HasAccess | Returns true if the list allows the specified access rights.

3.21.1 Size

Size returns the number of items in the list.

Syntax

.Net

C# uint Size ()

C++ | System: :UInt32 Size ()

VB Function Size As Ulnteger
ObjC

- (uint32 t) size

Return Value
The number of items in the list.

87

PHASEONE

3.21.2 IsEmpty
ISEmpty returns true if the list is empty.

Syntax
Net

C# bool IsEmpty ()

C++ | bool IsEmpty ()

VB Function IsEmpty As Boolean

ObjC

- (BOOL) isEmpty

Return Value
True if the list is empty, that is if its size is zero.

3.21.3 First
First returns a reference to the first item in the list.

Syntax
Net

C# ITtemType First()

C++ | ItemType” First ()

VB Function First As ItemType

ObjC

- (PlCaptureCore RootObject *) first

Return Value
A reference to the first item in the list. A NULL reference is returned if the list is empty.

3.21.4 Last
Last returns a reference to the last item in the list.

Syntax
Net

C# ItemType Last()

C++ | TtemType” Last ()

VB Function Last As ItemType

ObjC

- (PlCaptureCore RootObject *) last

Return Value
A reference to the list item in the list. A NULL reference is returned if the list is empty.

3.21.5 Next

Next returns a reference to the next item in the list following a specified item already in the
list.

88

PHASEONE

Syntax
Net

C# ItemType Next(ItemType index)

C++ | TtemType” Next (ItemType” index)

VB Function Next (index As ItemType) As ItemType

ObjC

- (PlCaptureCore RootObject *) next: (PlCaptureCore RootObject *) index

Parameters
index A reference to an item in the list.
Return Value

A reference to the next item in the list following the item referred to by index. A NULL
reference is returned, if is index is the last item, or if index is not in the list or is itself a NULL
reference.

Remarks
Next can be used with First to iterate forwards through all the items in the list.

3.21.6 Previous

Previous returns a reference to the previous item in the list preceding a specified item already
in the list.

Syntax
.Net

C# ItemType Previous(ItemType index)

C++ | ItemType” Previous(ItemType” index)

VB Function Previous(index As ItemType) As ItemType

ObjC

- (PlCaptureCore RootObject *) previous: (PlCaptureCore RootObject *) index

Parameters
index A reference to an item in the list.
Return Value

A reference to the previous item in the list preceding the item referred to by index. A NULL
reference is returned, if index is the first item, or if index is not in the list or is itself a NULL
reference.

Remarks
Previous can be used with Last to iterate backwards through all the items in the list.

3.21.7 Insert

Insert inserts a new item in front of another specified item in the list. Requires insert access
rights.

Syntax
.Net

‘C# ‘bool Insert(ItemType item, ItemType Dbefore)

89

PHASEONE

C++ | bool Insert(ItemType” item, ItemType” before)

VB Function Insert(item As ItemType, before As ItemType) As Boolean

ObjC
- (void) insert: (PlCaptureCore RootObject *) item
before: (PlCaptureCore RootObject *) before
Parameters
item A reference to an item to insert in the list. If item is already in
the list or is a NULL reference, then Insert does nothing.
before An optional reference to an item already in the list that item

should be inserted after. If before is a NULL reference or not in
the list, then item is inserted at the end of the list.

Return Value

True if item was added to the list, otherwise false. False is returned if item is already in the
list or is a NULL reference.

Remarks

To call Insert, the application must have insert access rights (kListAccess_Insert) for the
IObjectList object, otherwise an exception will be thrown. HasAccess can be used to test if
the application has specific access rights for the 10bjectList object.

3.21.8 Remove

Remove removes an item from the list. Requires remove access rights.

Syntax
Net

C# bool Remove(ItemType item)

C++ | bool Remove(ItemType” item)

VB Function Remove(item As ItemType) As Boolean

ObjC

- (void) remove: (PlCaptureCore RootObject *) item

Parameters

item A reference to an item in the list to remove. If item is not in the

list or is a NULL reference, then Remove does nothing.
Return Value
True if the item was in the list and thus removed, otherwise false.
Remarks

To call Remove, the application must have remove access rights (kListAccess_Remove) for
the 10bjectList object, otherwise an exception will be thrown. HasAccess can be used to test
if the application has specific access rights for the 10bjectList object.

3.21.9 Clear
Clear removes all items from the list. Requires remove access rights.

90

PHASEONE

Syntax
Net

C# void Clear ()

C++ | void Clear ()

VB Sub Clear

ObjC

- (void) clear

Remarks

To call Clear, the application must have remove access rights (kListAccess_Remove) for the
IObjectList object, otherwise an exception will be thrown. HasAccess can be used to test if
the application has specific access rights for the 10bjectList object.

3.21.10 GetAccess

GetAccess returns the access rights for this list as a bitmask of EnumListAccess values.

Syntax
Net

C# EnumListAccess GetAccess ()

C++ | EnumListAccess GetAccess ()

VB Function GetAccess As EnumListAccess

ObjC

- (uint32 t) getAccess

Return Value

A bitmask of EnumListAccess enumeration values indicating which access rights the
application has for the IListObject object.

Remarks

Different IListObject objects throughout CaptureCore will allow the application different
access rights to the list. Some lists are read-only, while others can be removed from but not
inserted to, and some allow full access.

3.21.11 HasAccess

HasAccess returns true if the list allows the specified access rights.

Syntax
.Net

C# bool HasAccess (EnumlListAccess access)

C++ | bool HasAccess(EnumListAccess access)

VB Function HasAccess(access As EnumListAccess) As Boolean

ObjC
‘— (BOOL) hasAccess: (uint32 t) access
Parameters
access A bitmask combination of EnumListAccess enumeration values

of the access rights to test for.

91

PHASEONE

Return Value
True if the list allows all the access rights specified in access, otherwise false.
Remarks

Different IListObject objects throughout CaptureCore will allow the application different
access rights to the list. Some lists are read-only, while others can be removed from but not
inserted to, and some allow full access.

92

PHASEONE

3.22 IValueRead (P1CaptureCore_ValueRead)

The IValueRead base class provides a common set of functionality for objects that contain a
value (number, string, Boolean, etc). IValueRead only provides reading functionality, the
IValueWrite class provides writing functionality for objects where the value can be modified.
IValueRead does not exist as an object on its own, and is only accessible via a derived class.

An IValueRead object can contain an undefined value. If the IValueRead method IsUndefined
returns true, the object’s value is undefined and cannot be interpreted by the application.
Applications should not call any of the get value methods if the IValueRead object indicates
that its value is undefined.

Members

ValueType Returns the value type (Boolean, integer, string, etc) of the object.

IsUndefined Returns true if the object’s value is undefined.

GetValue Gets the value of the object if the type of the object and the type
passed to GetValue are compatible. One can always get a string
representation for all value types. GetValue is available on platforms
that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed
integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit unsigned
integer (or enumeration).

GetValueInt64 Returns the value of the object if its value type is a 64-bit signed
integer.

GetValueUInt64 Returns the value of the object if its value type is a 64-bit unsigned
integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit floating
point.

GetValueString Returns the value of the object if its value type is a string, or a string
representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration
(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit
signed integer).

GetValuePointFloat | Returns the value of the object if its value type is a point (64-bit
floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit
signed integer).

GetValueAreaFloat | Returns the value of the object if its value type is an area (64-bit
floating point).

GetValueRect

Returns the value of the object if its value type is a rectangle (32-bit
signed integer).

93

PHASEONE

GetValueRectFloat | Returns the value of the object if its value type is a rectangle (64-bit
floating point).

Compare Compares this object’s value to another object of the same value
type, returning a signed integer representing if this object is less
than, greater than or equal to the other object.

3.22.1 ValueType
ValueType returns the value type (Boolean, integer, string, etc) of the object.

Syntax
Net

C# EnumValueType ValueType { get; }

property EnumValueType” ValueType

++
c { EnumValueType” get(); }

VB ReadOnly Property ValueType As EnumValueType

ObjC

- (EnumValueType) valueType

Return Value

An EnumValueType enumeration value that indicates the value type of the IValueRead
object.

Remarks
The value type of an IValueRead object doesn’t change after the object is created.

3.22.2 IsUndefined
IsUndefined returns true if the object’s value is undefined.

An [ValueRead object can contain an undefined value, that is a value that is not specified.
This allows CaptureCore to report values that are unknown, invalid, or in some other way
indeterminate. Such a value cannot be interpreted by the application.

Syntax
.Net

C# bool IsUndefined()

C++ | bool IsUndefined()

VB Function IsUndefined As Boolean

ObjC

- (BOOL) isUndefined

Return Value
True if the value of the IValueRead object is undefined, otherwise false.
Remarks

If IsUndefined returns true, an application should not call any of the get value methods nor
try to interpret the object’s value.

IsUndefined always returns true if the value type of the object is kValueType Undefined.
However, it can also be undefined for all other value types.

94

PHASEONE

3.22.3 Get Value Methods

There are several different methods that retrieve the value of the IValueRead object.
GetValue gets the value of the object if the type of the object and the type passed to GetValue
are compatible. GetValue is available on platforms that support overloading. GetValueBool,
GetValuelnt32, GetValueUInt32, GetValuelnt64, GetValueUInt64, GetValueFloat64,
GetValueString, and GetValueEnum return the value of the object if its value type matches
the method called.

One can always get a string representation for all value types by calling GetValue with a
string argument or GetValueString. In the case of an enumeration value type, in addition to
GetValueEnum, one can also call GetValue with a 32-bit signed or unsigned integer, or

GetValuelnt32 or GetValueUInt32.
The following table summarizes which methods can be called for each value type.

kValueType Undefined

None

kValueType Bool

GetValue, GetValueString, GetValueBool

kValueType Int32

GetValue, GetValueString, GetValuelnt32

kValueType UInt32

GetValue, GetValueString, GetValueUInt32

kValueType Int64

GetValue, GetValueString, GetValuelnt64

kValueType UInto64

GetValue, GetValueString, GetValueUInt64

kValueType Float64

GetValue, GetValueString, GetValueFloat64

kValueType String

GetValue, GetValueString

kValueType Enum

GetValue, GetValueString, GetValueEnum, GetValuelnt32,
GetValueUInt32

kValueType Point

GetValue, GetValueString, GetValuePoint

kValueType PointFloat

GetValue, GetValueString, GetValuePointFloat

kValueType Area

GetValue, GetValueString, GetValueArea

kValueType AreaFloat

GetValue, GetValueString, GetValueAreaFloat

kValueType Rect

GetValue, GetValueString, GetValueRect

kValueType RectFloat

GetValue, GetValueString, GetValueRectFloat

Syntax
Net

void GetValue

out bool value

void GetValue

out int value

void GetValue

out uint value

void GetValue

out long

void GetValue

out ulong value

void GetValue

out double wvalue

C# void GetValue

)
)
)
value)
)
)
)

string value

void GetValue

out System.Drawing.Point value

void GetValue

out System.Drawing.PointF value

void GetValue

out System.Drawing.Size value

void GetValue

out System.Drawing.SizeF value

void GetValue

out System.Drawing.Rectangle value

void GetValue

(
(
(
(
(
(
(out
(
(
(
(
(
(

— | —— | — |- |-

out System.Drawing.RectangleF value

95

PHASEONE

C++

bool GetValueBool ()
int GetValuelInt32 ()
uint GetValueUInt32 ()
long GetValueInt64 ()
ulong GetValueUInt64 ()
double GetValueFloat64 ()
string GetValueString()
int GetValueEnum ()
System.Drawing.Point GetValuePoint ()
System.Drawing.PointF GetValuePointFloat ()
System.Drawing.Size GetValueArea ()
System.Drawing.SizeF GetValueAreaFloat ()
System.Drawing.Rectangle GetValueRectangle ()
System.Drawing.RectangleF GetValueRectangleFloat ()
void GetValue (

[System: :Runtime: :InteropServices::0ut] bool% value)
void GetValue (

[System: :Runtime: :InteropServices::0ut] System::Int32% value)
void GetValue (

[System: :Runtime::InteropServices::0ut] System::UInt32% value)
void GetValue (

[System: :Runtime: :InteropServices::0ut] System::Int64% value)
void GetValue (

[System: :Runtime::InteropServices::0ut] System::UInt64% value)
void GetValue (

[System: :Runtime: :InteropServices::0ut] double% value)
void GetValue (

[System: :Runtime: :InteropServices::0ut] System::String”% value)

void GetValue([System::Runtime::InteropServices::0ut]
System: :Drawing: :Point”% value)

void GetValue([System::Runtime::InteropServices::0ut]
System: :Drawing: :PointF*% value)

void GetValue ([System::Runtime::InteropServices::0ut]
System: :Drawing::Size”% value)

void GetValue([System::Runtime::InteropServices::0ut]
System: :Drawing: :SizeF"% value)

void GetValue ([System::Runtime::InteropServices: :0ut]
System: :Drawing: :Rectangle”% value)

void GetValue ([System::Runtime::InteropServices::0ut]
System: :Drawing: :RectangleF"% value)

bool GetValueBool ()

System: :Int32 GetValueInt32 ()

System: :UInt32 GetValueUInt32 ()

System: :Int64 GetValueInt64 ()

System: :UInt64 GetValueUInto64 ()

double GetValueFloato64 ()

System: :String” GetValueString()

System: :Int32 GetValueEnum()

System: :Drawing: :Point” GetValuePoint ()

System: :Drawing: :PointF”" GetValuePointFloat ()

96

PHASEONE

System: :Drawing::Size” GetValueArea ()
System: :Drawing::SizeF” GetValueAreaFloat ()
System: :Drawing: :Rectangle” GetValueRect ()
System: :Drawing: :RectangleF” GetValueRectFloat ()
Sub GetValue(ByRef wvalue As Boolean)
Sub GetValue(ByRef value As Integer)
Sub GetValue (ByRef value As Ulnteger)
Sub GetValue(ByRef wvalue As Long)
Sub GetValue(ByRef value As ULong)
Sub GetValue(ByRef wvalue As Double)

String)

Sub GetValue

ByRef value As

System.Drawing.Point)

Sub GetValue

ByRef value As

System.Drawing.PointF)

Sub GetValue

ByRef value As

System.Drawing.Size)

Sub GetValue

ByRef value As

System.Drawing.SizeF)

(
(
(
(
(
Sub GetValue (ByRef value As
(
(
(
(
(

Sub GetValue

ByRef value As

System.Drawing.Rectangle)

Sub GetValue (ByRef wvalue As

System.Drawing.RectangleF)

VB Function GetValueBool As Boolean
Function GetValueInt32 As Integer
Function GetValueUInt32 As UlInteger
Function GetValuelInt64 As Long
Function GetValueUInt64 As ULong
Function GetValueFloat64 As Double
Function GetValueString As String
Function GetValueEnum As Integer
Function GetValuePoint As System.Drawing.Point
Function GetValuePointFloat As System.Drawing.PointF
Function GetValueArea As System.Drawing.Size
Function GetValueAreaFloat As System.Drawing.SizeF
Function GetValueRect As System.Drawing.Rectangle
Function GetValueRectFloat As System.Drawing.RectangleF

ObjC

- (BOOL) getValueBool

- (int32_t) getValueInt32

- (uint32_t) getValueUInt32

- (inte64 t) getValuelInt64

- (uint64 t) getValueUIntoc4

- (double) getValueFloat64

- (NSString *) getValueString

- (int32_t) getValueEnum

- (NSValue *) getValuePoint

- (NSValue *) getValuePointFloat

- (NSValue *) getValueArea

- (NSValue ¥*) getValueAreaFloat

- (NSValue *) getValueRect

- (NSValue *) getValueRectFloat

97

PHASEONE

Parameters

value GetValue only. A reference to language specific type that is
compatible with the value type of this IValueRead object. The
value of this IValueRead object is returned via this parameter.

Return Value

A language specific type that is appropriate for the value type requested and that represents
the value of this IValueRead object.

Remarks

All the get value methods (except GetValue with a string parameter or GetValueString) throw
an exception if the requested value type is not compatible with the value type of this
IValueRead object.

3.22.4 Compare

Compare compares this object’s value to another object of the same value type, returning a
signed integer representing if this object is less than, greater than or equal to the other object.

Syntax
.Net

C# int Compare(IValueRead otherValue)

C++ | System: :Int32 Compare(IValueRead” otherValue)

VB Function Compare(otherValue As IValueRead) As Integer

ObjC

- (NSComparisonResult) compare: (PlCaptureCore ValueRead *) otherValue
Parameters

otherValue A reference to another IValueRead object to compare with this

object.
Return Value

An integer value that is zero if this object is equal to otherValue, a positive value if this
object is greater than otherValue, and a negative value if this object is less than otherValue.

Remarks

Compare throws an exception if the value type of otherValue is not the same or not
compatible with the value type of this object.

98

PHASEONE

3.23 IValueWrite (P1CaptureCore_ValueWrite)

The IValueWrite base class provides a common set of functionality for objects that contain a
value (number, string, Boolean, etc). 1ValueWrite inherits from IValueRead, and provides
both writing and reading functionality (via inherited IValueRead methods). It does not exist
as an object on its own, and is only accessible via a derived class.

IValueWrite objects can be read-only, despite having methods for changing their value. This
is because some methods may return both types of values, a writeable or read-only value. In

these cases, IValueWrite objects are returned, but the IValueWrite method IsReadOnly will
return true. IsReadOnly should always be checked before calling IValueWrite methods.

Members

IsReadOnly Returns true if the object is a read-only object. Set value methods
may not be called on a read-only object.

SetValue Sets the value of the object if the type of the object and the type
passed to SetValue are compatible. SetValue is available on
platforms that support overloading.

SetValueBool Sets the value of the object if its value type is a Boolean.

SetValueInt32 Sets the value of the object if its value type is a 32-bit signed integer
(or enumeration).

SetValueUInt32 Sets the value of the object if its value type is a 32-bit unsigned
integer (or enumeration).

SetValuelInt64 Sets the value of the object if its value type is a 64-bit signed integer.

SetValueUInt64 Sets the value of the object if its value type is a 64-bit unsigned
integer.

SetValueFloat64 Sets the value of the object if its value type is a 64-bit floating point.

SetValueString Sets the value of the object if its value type is a string.

SetValueEnum Sets the value of the object if its value type is an enumeration (32-bit
signed integer).

SetValuePoint Sets the value of the object if its value type is a point (32-bit signed
integer).

SetvaluePointFloat | Sets the value of the object if its value type is a point (64-bit floating
point).

SetValueArea Sets the value of the object if its value type is an area (32-bit signed
integer).

SetvalueAreaFloat | Sets the value of the object if its value type is an area (64-bit floating
point).

SetValueRect Sets the value of the object if its value type is a rectangle (32-bit
signed integer).

SetValueRectFloat | Sets the value of the object if its value type is a rectangle (64-bit
floating point).

99

PHASEONE

Inherited from IValueRead

ValueType Returns the value type (Boolean, integer, string, etc) of the object.

IsUndefined Returns true if the object’s value is undefined.

GetValue Gets the value of the object if the type of the object and the type
passed to GetValue are compatible. One can always get a string
representation for all value types. GetValue is available on platforms
that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValueInt32 Returns the value of the object if its value type is a 32-bit signed
integer (or enumeration).

GetValueUInt32 Returns the value of the object if its value type is a 32-bit unsigned
integer (or enumeration).

GetValueInté64 Returns the value of the object if its value type is a 64-bit signed
integer.

GetValueUInt64 Returns the value of the object if its value type is a 64-bit unsigned
integer.

GetValueFloat64 Returns the value of the object if its value type is a 64-bit floating
point.

GetValueString Returns the value of the object if its value type is a string, or a string
representation of the value for all other value types.

GetValueEnum Returns the value of the object if its value type is an enumeration
(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit
signed integer).

GetValuePointFloat | Returns the value of the object if its value type is a point (64-bit
floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit
signed integer).

GetValueAreaFloat | Returns the value of the object if its value type is an area (64-bit
floating point).

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit
signed integer).

GetValueRectFloat | Returns the value of the object if its value type is a rectangle (64-bit
floating point).

Compare Compares this object’s value to another object of the same value

type, returning a signed integer representing if this object is less
than, greater than or equal to the object.

3.23.1 IsReadOnly

IsReadOnly returns true if the object is a read-only object. Set value methods may not be
called on a read-only object.

100

PHASEONE

Syntax
Net

C# bool IsReadOnly ()

C++ | bool IsReadOnly ()

VB Function IsReadOnly As Boolean

ObjC

- (BOOL) isReadOnly

Return Value
True if the IValueWrite object is read-only.

3.23.2 Set Value Methods

There are several different methods that set the value of the IValueWrite object. SetValue sets
the value of the object if the type of the object and the type passed to SetValue are
compatible. SetValue is available on platforms that support overloading. SetValueBool,
SetValuelnt32, SetValueUInt32, SetValuelnt64, SetValueUInt64, SetValueFloat64,
SetValueString, and SetValueEnum set the value of the object if its value type matches the
method called.

In the case of an enumeration value type, in addition to SetValueEnum, one can also call
SetValue with a 32-bit signed or unsigned integer, or SetValuelnt32 or SetValueUInt32.

The following table summarizes which methods can be called for each value type.

kValueType Undefined None

kValueType Bool SetValue, SetValueBool
kValueType_Int32 SetValue, SetValuelnt32
kValueType UInt32 SetValue, SetValueUInt32
kValueType Int64 SetValue, SetValuelnt64
kvalueType_UInt64 SetValue, SetValueUInt64
kValueType Float64 SetValue, SetValueFloat64
kvalueType_String SetValue, SetValueString
kValueType_Enum SetValue, SetValueEnum, SetValuelnt32, SetValueUInt32
kValueType Point SetValue, SetValuePoint
kvalueType PointFloat | SetValue, SetValuePointFloat
kValueType Area SetValue, SetValueArea
kvalueType AreaFloat | SetValue, SetValueAreaFloat
kvalueType Rect SetValue, SetValueRect
kvalueType RectrFloat | SetValue, SetValueRectFloat

Syntax

.Net
void SetValue(bool value)
void SetValue(int value)

C# void SetValue(uint value)
void SetValue(long value)
void SetValue (ulong value)

101

PHASEONE

void SetValue (double value)
void SetValue(string value)
void SetValue(System.Drawing.Point value)
void SetValue(System.Drawing.PointF value)
void SetValue(System.Drawing.Size value)
void SetValue(System.Drawing.SizeF value)
void SetValue(System.Drawing.Rectangle value)
void SetValue(System.Drawing.RectangleF value)
void SetValue(IValueRead value)
void SetValueBool (bool value)
void SetValueInt32 (int value)
void SetValueUInt32(wuilnt value)
void SetValueInt64 (long value)
void SetValueUInt64(ulong value)
void SetValueFloat64(double value)
void SetValueString(string value)
void SetValueEnum (int value)
void SetValuePoint (System.Drawing.Point value)
void SetValuePointFloat (System.Drawing.PointF value)
void SetValueArea (System.Drawing.Size value)
void SetValueAreaFloat(System.Drawing.SizeF value)
void SetValueRect (System.Drawing.Rectangle value)
void SetValueRectFloat(System.Drawing.RectangleF value)
void SetValue(bool value)
void SetValue(System::Int32 value)
void SetValue(System::UInt32 value)
void SetValue (System::Int64 value)
void SetValue(System::UInt64 value)
void SetValue (double value)
void SetValue(System::String” value)
void SetValue(System::Drawing::Point” value)
void SetValue(System::Drawing::PointF” value)
void SetValue(System::Drawing::Size” value)
void SetValue(System::Drawing::SizeF” value)
void SetValue(System::Drawing::Rectangle” value)
Cr void SetValue(System::Drawing::RectangleF” value)
void SetValue(IValueRead” value)
void SetValueBool (bool value)
void SetValueInt32(System: :Int32 value)
void SetValueUInt32(System::UInt32 value)
void SetValueInt64 (System: :Int64 value)
void SetValueUInt64(System::UInt64 value)
voild SetValueFloat64 (double value)
void SetValueString(System::String” value)
void SetValueEnum (System: :Int32 value)
void SetValuePoint (System: :Drawing: :Point” value)
void SetValuePointFloat(System::Drawing::PointF" value)

102

PHASEONE

void SetValueArea (

System:

:Drawing:

:Size”

value

void SetValueAreaFloa

to(

System:

:Drawing:

:SizeF”

value

void SetValueRect (

System:

:Drawing:

:Rectangle”

value

void SetValueRectFloa

t(

System:

:Drawing:

:RectangleF”

value

|~ | — | —

Sub SetValue(value

As

Boolean

)

Sub SetValue(value

As

Integer

)

Sub SetValue(value

As

UInteger)

Sub SetValue(value

As

Long)

Sub SetValue(value

As

ULong

Sub SetValue(value

As

Double

)

Sub SetValue(value

As

String

)

Sub SetValue(value

As

System.

Drawing.Po

int)

Sub SetValue(value

As

System.

Drawing.Po

intF)

Sub SetValue(value

As

System.

Drawing.Si

ze)

Sub SetValue(value

As

System.

Drawing.Si

zeF)

Sub SetValue(value

As

System.

Drawing.Re

ctangle

)

(
(
(
(
(
(
(
(
(
(
(
(

Sub SetValue(value

As

System

.Drawing.

RectangleF)

Sub SetValue(value

VB

As

IValueRead)

Sub SetValueBool (

value As

Boolean)

Sub SetValueInt32(

value As

Integer)

Sub SetValueUInt32 (

value As

UInteger)

Sub SetValuelIntoid (

value As

Long)

Sub SetValueUInt64 (

value As

ULong)

Sub SetValueFloat64 (

value As

Double)

Sub SetValueString(

value As

String)

Sub SetValueEnum (

value As

Integer)

Sub SetValuePoint (

value

As System.

Drawing.

Point)

Sub SetValuePointFloa

t (value

As System.

Drawing.

PointF)

Sub SetValueArea (

value

As System.

Drawing.

Size)

Sub SetValueAreaFloat

(wvalue

As System.

Drawing.

SizeF)

Sub SetValueRect (

value

As System.

Drawing.

Rectangle)

Sub SetValueRectFloat

(value

As System.

Drawing.

RectangleF)

setValue:

value

(P1lCaptureCore ValueRead *)

setValueBool:

(BOOL)

value

setValuelInt32:

int32 t)

value

setValueUInt32:

uint32 t)

value

setValuelInto64d:

int64_t)

value

setValueUInto64:

uinted t)

value

setValueFloat64:

double)

value

setValueString:

value

setValueEnum:

int32 t)

value

setValuePoint:

NSValue

*

value

setValuePointFloat:

NSValue

*

value

setValueArea:

NSValue

value

setValueAreaFloat:

NSValue

*

value

setValueRect:

NSValue

(
(
(
(
(
(NSString *)
(
(
(
(
(
(

*
— || — | — | —

*

value

103

PHASEONE

‘— (void) setValueRectFloat: (NSValue *) value
Parameters
value A language specific type that is compatible with the value type

of this IValueWrite object, and that contains the value to set.

Remarks

All the set value methods throw an exception if value type of value is not compatible with the
value type of this IValueRead object, or if the IValueWrite object is read-only.

104

PHASEONE

3.24 |ErrorSource (P1CaptureCore_ErrorSource)

The IErrorSource base class provides a common set of functionality for classes that can
queue errors. It does not exist as an object on its own, and is only accessible via a derived
class.

Most classes throw exceptions when a method call encounters an error. Classes derived from
IErrorSource, such as all 1CaptureObject derived classes (ICaptureProvider, ICamera, and
ICapturelmage), may choose to queue an error instead of throwing an exception. This is
typically done when an error occurs outside of a method call, such as in a background thread.
Such classes will generally still throw exceptions when an error occurs in a method call.

IErrorSource objects maintain an internal queue of IErrorObject objects, and post a
kEventld Error event whenever a new IErrorObject object is added to the queue.
Applications can call the IErrorSource method GetError to retrieve the next error object in
the queue. Note that the error queue can grow indefinitely if GetError is not called to remove
errors from the queue.

IErrorSource is a parent to IErrorObject objects.
Members

GetError | Returns the next IErrorObject object, if any, for the IErrorSource object.

Events

General (EnumGeneralEventId)

An error has occurred on a background thread. Indicates that a new IErrorObject object has

k d is obj
FVERtIA_EEEOT | heen queued by this object.

3.24.1 GetError
GetError returns the next IErrorObject object, if any, for the IErrorSource object.

Syntax
Net

C# IErrorObject GetError ()

C++ | IErrorObject” GetError ()

VB Function GetError As IErrorObject

ObjC

- (PlCaptureCore ErrorObject *) getError

Return Value

A reference to an IErrorObject object that contains the next error in the error queue of the
IErrorSource object. A NULL reference is returned if there are no errors in the error queue.

Remarks

GetError removes the error from the error queue. So subsequent calls to GetError will return
new errors, or a NULL reference if there are no queued errors when the method is called.
3.24.2 KkEventld_Error

This event is posted by the IErrorSource object when an IErrorObject object has been added
to the error list of the IErrorSource object.

105

PHASEONE

Arguments
None

106

PHASEONE

3.25 |ErrorObject (P1CaptureCore_ErrorObject)

The IErrorObject class contains information about an error encountered by an IErrorSource
derived class. IErrorObject objects are generally created by an IErrorSource object whenever
an error is encountered that can not be reported by throwing an exception. IErrorObjects are
read-only objects.

IErrorObject is a child object of IErrorSource, and inherits from 1ChildObject.

Members
Type Returns the error type for the error, which is generally one of the
EnumErrorType enumeration values, but can also be other values.
Number Returns the error number for the error, that is unique for a specific
error type.
If the error type is kErrorType_CaptureCore, the error number
corresponds to an EnumCaptureCoreError enumeration value.
TypeName Returns a string describing the error type.

Description | Returns a string describing the error.

Detail Returns an optional string containing additional details about the
error.

Inherited from IChildObject

Parent Returns the parent IErrorSource object of this object.

3.25.1 Type

Type returns the error type for the error, which is generally one of the EnumErrorType
enumeration values, but can also be other values.

The error type represents a category or source of an error. There can be many error types, and
the most common are defined by the EnumErrorType enumeration. The error number
returned by the Number method is unique for a specific error type, but errors of different
error types may use the same error number. Therefore, an application should always check
the error type before interpreting the error number.

Syntax
.Net

C# property uint Type;

property System::UInt32 Type

++
c { System::UInt32 get(); }

VB | ReadOnly Property Type As Ulnteger

ObjC

- (uint32) type

Return Value

An numerical value representing the error type of the IErrorObject object. Generally, the
value will be one of the EnumErrorType enumeration values, but can be other values as well.

107

PHASEONE

Remarks

A specific error is defined by both the error type and the error number. The error type of an
IErrorObject object doesn’t change after the object is created.

3.25.2 Number

Number returns the error number for the error, that is unique for a specific error type.

Syntax
.Net

C# property uint Number;

property System::UInt32 Number

++
c { System::UInt32 get(); }

VB ReadOnly Property Number As UlInteger

ObjC

- (uint32 t) number

Return Value

A numerical value representing the error number of the IErrorObject object. The error
number is unique only for a specific error type.

Remarks

A specific error is defined by both the error type and the error number. If the error type is
kErrorType_CaptureCore, the error number corresponds to an EnumCaptureCoreError
enumeration value. The error number of an IErrorObject object doesn’t change after the
object is created.

3.25.3 TypeName
TypeName returns a string describing the error type.

Syntax
.Net

C# string TypeName { get; }

property System::String” TypeName

++
c { System::String” get(); }

VB ReadOnly Property TypeName As String

ObjC

- (NSString *) typeName

Return Value

A string containing the name of the error type returned by the method Type. A NULL
reference or an empty string can be returned, if no type name is available, but this is very
unlikely.

Remarks

This method can be used to display a description of the type of error, even error types not
defined by the EnumErrorType enumeration.

The type name of an IErrorObject object doesn’t change after the object is created.

108

PHASEONE

3.25.4 Description
Description returns a string describing the error.

Syntax
Net

C# string Description { get; }

property System::String” Description

C++ .
{ System::String” get(); }

VB ReadOnly Property Description As String

ObjC

- (NSString *) description

Return Value

A string describing the error. The string is generally the same for the error type and error
number of the IErrorObject object. A NULL reference or an empty string can be returned, if
no description is available, but this is very unlikely.

Remarks
The description string of an IErrorObject object doesn’t change after the object is created.

3.25.5 Detail

Detail returns an optional string containing additional details about the error.
Syntax

.Net

C# string Detail { get; }

property System::String”® Detail

++
c { System::String” get(); }

VB ReadOnly Property Detail As String

ObjC

- (NSString *) detail

Return Value

A string describing additional details about the error, such as filename, parameter, and so on.
A NULL reference or an empty string will be returned if there is no additional details for the
error.

Remarks
The detail string of an IErrorObject object doesn’t change after the object is created.

109

PHASEONE

3.26 IEventSource (P1CaptureCore_ EventSource)

The IEventSource base class provides a common set of functionality for classes that can post
events to event receivers (IEventReceiver derived classes). It does not exist as an object on its
own, and is only accessible via a derived class.

Applications can create an event receiver by implementing an IEventReceiver derived class.
Instances of these application created event receivers can subscribe or unsubscribe to events
posted by an IEventSource object. This is done by adding or removing an IEventReceiver
object to the IEventSource object’s internal receiver list via the methods AddReceiver or
RemoveReceiver.

IEventSource is a parent to IEventObject objects.

Members
. Adds an IEventReceiver object and subscribes to specified events from

AddReceiver .

the IEventSource object.

. Removes a previously added IEventReceiver object, unsubscribing to

RemoveReceilver . .

specified events from the IEventSource object.
Events

General (EnumGeneralEventId)

kEventId All | Used for subscribing or unsubscribing to all events via AddReceiver or RemoveReceiver.

3.26.1 AddReceiver

AddReceiver adds an IEventReceiver object to the receiver list of the IEventSource object,
and subscribes it to specified events. This method can be called multiple times to subscribe
the same IEventReceiver object to multiple events, or it can subscribe to the event ID
kEventld_All to receive all events.

Syntax
Net

void AddReceiver (IEventReceiver receiver, System.IntPtr pContext)

C# void AddReceiver(uint eventID, IEventReceiver receiver,
System.IntPtr pContext)

void AddReceiver (IEventReceiver” receiver,
System: :IntPtr pContext)

C++
void AddReceiver (System::UInt32 eventID, IEventReceiver” receiver,
System: :IntPtr pContext)
Sub AddReceiver (receiver As IEventReceiver,
VB pContext As System.IntPtr)
Sub AddReceiver(eventID As Ulnteger, receiver As IEventReceiver,
pContext As System.IntPtr)
ObjC
- (void) addReceiver: (id) receiver selector: (SEL) aSelector
eventID: (uint32 t) eventID
context: (void *) pContext
Parameters
receiver An instance of an object that has implemented IEventReceiver.

110

PHASEONE

eventID The event ID of the event to subscribe receiver to. Multiple
calls can be made for different event IDs. Pass the event ID
kEventld_All to subscribe to all events.

pContext An optional pointer parameter that is passed to the
IEventReceiver method OnEvent, when the specified events are
delivered. Multiple calls can be made with different pContext
values. Pass a NULL reference if not needed.

aSelector [ObjC only] A selector for which method to call on receiver
when delivering an event. The method must take the same
parameters as the OnEvent method.

Remarks

A call to AddReceiver is ignored if called more than once with the same parameters as a
previous call. If all but the pContext parameter is the same, then the specified events will be
delivered multiple times to receiver, once for each unique pContext value.

When an application no longer needs to receive events from the 1EventSource object, for each
call to AddReceiver that was made, a matching call to RemoveReceiver, with the exact same
parameters (including pContext), should be performed.

If a receiver is subscribed to both kEventld_All as well as other events, then the other events
will be delivered twice to the receiver. Matching calls to RemoveReceiver should still be
made for each call to AddReceiver.

3.26.2 RemoveReceiver

RemoveReceiver removes a previously added IEventReceiver object from the receiver list of
the IEventSource object, unsubscribing to specified events.

When an application no longer needs to receive events from the IEventSource object, a
matching call to RemoveReceiver, with the exact same parameters (including pContext),
should be performed, for each call to AddReceiver that was made.

Syntax
.Net

void RemoveReceiver (IEventReceiver receiver, System.IntPtr pContext)

C# voild RemoveReceiver (uint eventID, IEventReceiver receiver,
System.IntPtr pContext)

void RemoveReceiver (IEventReceiver” receiver,
System: :IntPtr pContext)

C++
void RemoveReceiver (System::UInt32 eventID, IEventReceiver” receiver,
System: :IntPtr pContext)
Sub RemoveReceiver (receiver As IEventReceiver,
VB pContext As System.IntPtr)
Sub RemoveReceiver (eventID As Ulnteger, receiver As IEventReceiver,
pContext As System.IntPtr)
ObjC
- (void) removeReceiver: (id) receiver selector: (SEL) aSelector

eventID: (uint32 t) eventID
context: (void *) pContext

111

PHASEONE

Parameters

receiver The instance of the IEventReceiver object that was passed to a
previous call to AddReceiver.

eventlD The event ID of the event to unsubscribe receiver from that was
passed to a previous call to AddReceiver. Multiple calls must be
made for each event ID that was passed to AddReceiver. Pass
kEventld_All to unsubscribe to all events.

pContext The pointer parameter that was passed to a previous call to
AddReceiver. Multiple calls must be made for each pContext
value that was passed to AddReceiver.

aSelector [ODbjC only] The selector that was passed to a previous call to
AddReceiver.

Remarks

All parameters must match a previous call to AddReceiver, otherwise the call to
RemoveReceiver is ignored. The exception is eventlD, which may be set to kEventID_All to
unsubscribe all previous calls to AddReceiver that match the other remaining parameters.

The IEventReceiver object is only removed from the IEventSource object’s receiver list, if
RemoveReceiver calls have been made that match every AddReceiver call for receiver.

If RemoveReceiver is called at the same time an event is being delivered to the OnEvent
method of receiver, the call to RemoveReceiver will wait until OnEvent is completed. This
prevents RemoveReceiver from returning before it can guarantee that OnEvent is done
processing the specified events.

It is completely safe to call RemoveReceiver directly from OnEvent. However, it is important
that OnEvent does not wait on any threads, or make calls that wait on any threads, that could
directly or indirectly call RemoveReceiver for the IEventReceiver object. Otherwise, a
deadlock will occur.

112

PHASEONE

3.27 IEventReceiver (P1CaptureCore_EventReceiver)

The IEventReceiver interface class specifies the methods that need to be implemented by an
application defined class in order to receive events from an IEventSource object. It provides
no functionality of its own and is only an interface specification.

Applications that wish to receive events from an IEventSource object can define as many
classes as they like to implement the IEventReceiver interface. One or more instances of these
IEventReceiver derived classes can be added to each IEventSource object or to multiple
IEventSource objects. IEventReceiver objects can subscribe or unsubscribe to events by
calling the IEventSource methods AddReceiver or RemoveReceiver.

A background thread is created for delivering events for each IEventReceiver object that is
added to an IEventSource object. Only one thread is created per IEventReceiver object added
to an IEventSource object, even if the IEventReceiver object is added more than once in order
to subscribe to different events. If an IEventReceiver object is added to multiple IEventSource
objects, one thread is still created for each IEventSource object.

Events sent from a specific IEventSource object to a specific IEventReceiver are always
delivered sequentially on a single thread. The IEventReceiver will not receive additional
events from that specific IEventSource until it has returned from OnEvent. Note that events
sent to different IEventReceiver objects or received from different IEventSource objects are
delivered on different threads and can be received simultaneously.

Members

This method is called by an IEventSource object when delivering an event in the

OREVERE | form of an IEventObject object.

3.27.1 OnEvent

OnEvent is called by an IEventSource object when delivering an event in the form of an
IEventObject object.

Syntax
Net

C# void OnEvent (IEventObject eventObj, System.IntPtr pContext)

C++ | void OnEvent (IEventObject” eventObj, System::IntPtr pContext)

VB Sub OnEvent (eventObj As IEventObject, pContext As System.IntPtr)

ObjC

- (void) onEvent: (PlCaptureCore EventObject *) eventObj
context: (void *) pContext

Parameters

eventObj An |EventObject object describing an event received from an
IEventSource object.

pContext An optional pointer argument defined when the IEventReceiver
was subscribed to events by calling the 1EventSource method
AddReceiver.

113

PHASEONE

Remarks

It is generally a good idea to handle events as quickly as possible, so that other events are not
overly delayed in being delivered. Tasks that take a lengthy time should be performed on
another thread, instead of in OnEvent.

Calls to OnEvent are made in a background thread. There is a single background thread per
IEventSource object that this IEventReceiver is added to. Events from a specific IEventSource
object are delivered sequentially on this thread. However, if the IEventReceiver is added to
multiple IEventSource objects, events are delivered on different threads and possibly at the
same time. An implementation of OnEvent should take care to use thread-synchronization
mechanisms if added to more than one IEventSource object.

If the IEventSource method RemoveReceiver is called for this IEventReceiver at the same
time that OnEvent is called by the background thread, the call to RemoveReceiver will wait
until OnEvent is completed. It is important that OnEvent does not wait on any threads, or
make calls that wait on any threads, that could directly or indirectly call RemoveReceiver for
this IEventReceiver object. Otherwise, a deadlock will occur. It is, however, completely safe
to call RemoveReceiver for this or other IEventReceiver objects directly from OnEvent.

114

PHASEONE

3.28 IEventObject (P1CaptureCore_EventObject)

The IEventObject class contains information about an event received from an IEventSource
derived class. IEventObject objects are read-only objects and are described by a minimum of
an event ID. When an event is sent by an IEventSource object, an IEventObject is delivered to
each IEventReceiver added to the IEventSource and subscribed to the event’s event ID.

IEventObject objects can have an optional number of value arguments (IEventArgument).
This number of arguments and their definition depends upon the individual event. It can
include for example the property ID of a changed property value. See the specific
IEventSource derived class for a list of possible event IDs and their arguments.

IEventObiject is a child object of IEventSource, and inherits from 1ChildObject.

Members

1d Returns the event ID of the IEventObject.
NumberOfArguments Returns the number of optional event arguments.
Argument Returns a specified event argument (IEventArgument).
Inherited from IChildObject

Parent Returns the parent IEventSource object of this object.
3.281 1Id

Id returns the event ID of the IEventObject.

The event ID specifies which event the IEventObject represents. The event ID is set by the
IEventSource object that posted the event. The event IDs for a specific class are described in
the documentation for each class derived from IEventSource.

Syntax
Net

C# uint Id { get; }

property System::UInt32 Id

CH+ { System::UInt32 get(); }

VB ReadOnly Property Id As Ulnteger

ObjC

- (uint32_t) id

Return Value

A numerical value representing the ID of the IEventObject.

Remarks

The event ID of an IEventObject object doesn’t change after the object is created.

3.28.2 NumberOfArguments
NumberOfArguments returns the number of optional event arguments.

Some events can include arguments which are retrieved via the Argument method. The
number of available arguments is returned by this method.

115

PHASEONE

Syntax
Net

C# uint NumberOfArguments { get; }

property System::UInt32 NumberOfArguments

++
c { System::UInt32 get(); }

VB | ReadOnly Property NumberOfArguments As Ulnteger

ObjC

- (uint32 t) numberOfArguments

Return Value

The number of arguments that can be retrieved via the Argument method.

Remarks

The number of arguments in the IEventObject doesn’t change after the object is created.

3.28.3 Argument
Argument returns a specified event argument (IEventArgument).

Syntax
.Net

C# IEventArgument Argument(uint index)

C++ | IEventArgument” Argument (System::UInt32 index)

VB Function Argument (index As UlInteger) As IEventArgument

ObjC

- (PlCaptureCore EventArgument *) argument: (uint32 t) index

Parameters

index A zero based index specifying which argument to return. The
first argument is zero, the last argument is one less than the
number of arguments returned by NumberOfArguments.

Return Value

A reference to an IEventArgument object that corresponds to the index parameter. A NULL
reference is returned if there is no argument for the specified index.

Remarks

An IEventArgument object is derived from the IValueRead class and represents simple values
that can be passed with the event. Typical values are the ID of the ICaptureProvider,
ICamera, ICapturelmage, IProperty, or ICapability object associated with the event. See the
documentation for an event ID for the possible event arguments.

116

PHASEONE

3.29 IEventArgument (P1CaptureCore_EventArgument)

The IEventArgument class describes an optional argument value for an instance of an
IEventObject object. An IEventArgument object is a read-only object and inherits from
IValueRead.

IEventObject objects can have an optional number of IEventArgument objects for a given
event. For example, a possible event argument can be the property ID of a changed property
value. Although IEventArgument objects are retrieved from a specific IEventObject object,
IEventArgument objects are not child objects of IEventObject. They are part of the
IEventObject.

Members

Inherited from IValueRead

ValueType Returns the value type (Boolean, integer, string, etc) of the object.

IsUndefined Returns true if the object’s value is undefined.

Gets the value of the object if the type of the object and the type
passed to GetValue are compatible. One can always get a string

GetVal . . A
etvatue representation for all value types. GetValue is available on platforms

that support overloading.

GetValueBool Returns the value of the object if its value type is a Boolean.

GetValuelnt3? Returns the value of_the object if its value type is a 32-bit signed
integer (or enumeration).

GetValueUlnt3o Returns the value of_the object if its value type is a 32-bit unsigned
integer (or enumeration).

CotValuelnt 64 Returns the value of the object if its value type is a 64-bit signed
integer.

CotValueUInt 64 Returns the value of the object if its value type is a 64-bit unsigned
integer.

GetValueFloat 64 Re_turns the value of the object if its value type is a 64-bit floating
point.

GetValueString Returns the_ value of the object if its value type is a string, or a string
representation of the value for all other value types.

GetvalueEnum Returns the value of the object if its value type is an enumeration

(32-bit signed integer).

GetValuePoint Returns the value of the object if its value type is a point (32-bit
signed integer).

GetValuePointFloat | Returns the value of the object if its value type is a point (64-bit
floating point).

GetValueArea Returns the value of the object if its value type is an area (32-bit
signed integer).

GetValueAreaFloat | Returns the value of the object if its value type is an area (64-bit
floating point).

117

PHASEONE

GetValueRect Returns the value of the object if its value type is a rectangle (32-bit
signed integer).

GetValueRectFloat | Returns the value of the object if its value type is a rectangle (64-bit
floating point).

Compares this object’s value to another object of the same value
Compare type, returning a signed integer representing if this object is less
than, greater than or equal to the other object.

118

PHASEONE

3.30 IProgressSource (P1CaptureCore_ProgressSource)

The IProgressSource base class provides a common set of functionality for classes that can
report progress status for progress tasks. It does not exist as an object on its own, and is only
accessible via a derived class.

IProgressSource is a parent to IProgressStatus objects.
Members

GetProgress | Returns the next IProgressStatus object in the progress queue for this object.

Events
General (EnumGeneralEventId)
kEventId ProgressUpdate ‘ Indicates that a new IProgressStatus object has been queued by this object.

3.30.1 GetProgress
GetProgress returns the next IProgressStatus object in the progress queue for this object.

Syntax
Net

C# IProgressStatus GetProgress()

C++ | IProgressStatus” GetProgress ()

VB Function GetProgress As IProgressStatus

ObjC

- (PlCaptureCore ProgressStatus *) getProgress

Return Value

A reference to the next IProgressStatus object in the progress queue of the IProgressSource
object. A NULL reference is returned if there are no IProgressStatus objects in the progress
queue.

Remarks

GetProgress removes the IProgressStatus object from the progress queue. So subsequent
calls to GetProgress will return new objects, or a NULL reference if there are no queued
objects when the method is called.

3.30.2 KkEventld _ProgressUpdate

This event is posted by the IProgressSource object when an IProgressStatus object has been
added to the progress queue of the IProgressSource object.

Arguments
None

119

PHASEONE

3.31 IProgressStatus (P1CaptureCore_ProgressStatus)

The IProgressStatus class provides progress status for an instance of a progress task for an
IProgressSource class. It is essentially a read-only data structure, with an optional capability
to cancel the progress task it is associated with.

IProgressStatus objects are created and queued by the IProgressSource class and retrieved by
a call to GetProgress. When the object is queued, a kEventld_ProgressUpdate event is posted
by the IProgressSource class. Since there is a lag between the creation of the object and its
retrieval by the application, the status reported may not represent the current status, but a
snapshot of the status in the recent past. Therefore, an application should try to retrieve

IProgressStatus objects as quickly as possible.

IProgressStatus is a child object of IProgressSource, and inherits from 1ChildObject.

Members
4 Returns the progress status ID for the IProgressStatus object, identifying the
type of progress task the object represents.
Returns an unique number that is the same for all IProgressStatus objects
Instance .
that represent the same instance of a progress task.
Description | Returns an optional string describing the progress task.
betail Returns an optional string with additional detail of what the progress task is
currently performing.
Unit Returns the unit of the values returned by Current and End as an optional
string. For example “MB” for megabytes.
Returns a numerical value representing the current progress state of the
Current .
progress task. The value is always <= End.
Returns a numerical value representing the end progress state of the progress
End . . .
task. This could be zero, if no such value is known.
Percent Returns the current progress state as a percent, if End is defined (not zero).
ElapsedTime | Returns the time in milliseconds since the progress task started.
Returns true if the progress task is complete. If true, this is the last
IsDone . .
IProgressStatus object for the progress task instance.
Returns true if the progress task has been cancelled. If true, this is the last
IsCancelled . .
IProgressStatus object for the progress task instance.
CanCancel Returns true if the progress task can be cancelled by calling Cancel.
Cancels the represented progress task, if it is still active. CanCancel must be
Cancel X
true to call this method.
Inherited from IChildObject
Parent Returns the parent IEventSource object of this object.
3.31.1 d

Id returns the progress status ID for the IProgressStatus object, identifying the type of
progress task the object represents.

120

PHASEONE

Syntax
Net

C# uint Id { get; }

property System::UInt32 Id

++
c { System::UInt32 get(); }

VB | ReadOnly Property Id As Ulnteger

ObjC

- (uint32 t) id

Return Value

The progress status ID for the IProgressStatus object. See the description for each specific
IProgressSource derived class for possible progress status ID values.

Remarks

The ID of an IProgressStatus object doesn’t change after the object is created. It is also the
same for all IProgressStatus objects of the same task instance.

3.31.2 Instance

Instance returns an unique number that is the same for all IProgressStatus objects that
represent the same instance of a progress task.

Syntax
Net

C# uint Instance { get; }

property System::UInt32 Instance

++
c { System::UInt32 get(); }

VB ReadOnly Property Instance As Ulnteger

ObjC

- (uint32 t) instance

Return Value

An unique number representing the progress task instance that created the IProgressStatus
object.

Remarks

All instances of a progress task have an unique instance number, which is assigned to all
IProgressStatus objects created by that task. This number can be used to distinguish between
the progress status of different tasks that are running at the same time, such as capturing two
images at the same time from an 1Camera object.

The instance number of an IProgressStatus object doesn’t change after the object is created.

3.31.3 Description
Description returns an optional string describing the progress task.

Syntax
Net

C# string Description { get; }

property System::String” Description

C++ \
{ System::String” get(); }

121

PHASEONE

‘VB ‘ ReadOnly Property Description As String

ObjC

‘— (NSString *) description

Return Value

An optional string describing the progress task the status object describes. The string is
generally short and useful for providing a title or heading for a progress task. A NULL
reference or an empty string is returned if no description is available.

Remarks

The description string of an IProgressStatus object doesn’t change after the object is created.
Its value is usually the same in all IProgressStatus objects of the same task instance.

3.31.4 Detall

Detail returns an optional string with additional detail of what the progress task is currently
performing. This is generally useful when the progress task is divided into subtasks, or has
multiple objects to perform the task upon, such as saving multiple files. The string can be the
name of the subtask, or the name of the object, such as a file name.

Syntax
.Net

C# string Detail { get; }

property System::String” Detail

CH+ { System::String” get(); }

VB ReadOnly Property Detail As String

ObjC

- (NSString *) detail

Return Value

An optional string with detail of what the progress task is currently doing. A NULL reference
or an empty string is returned if no detail is available.

Remarks

The detail string of an IProgressStatus object doesn’t change after the object is created. Its
value is different in subsequent IProgressStatus objects of the same task instance.

3.31.5 Unit

Unit returns the unit of the values returned by Current and End as an optional string. For
example “MB” for megabytes.

Syntax
.Net

C# string Unit { get; }

property System::String” Unit

++
c { System::String” get(); }
VB ReadOnly Property Unit As String
ObjC

‘— (NSString *) unit

122

PHASEONE

Return Value

An optional string describing the unit of the values returned by Current and End. A NULL
reference or an empty string is returned if the unit is not defined.

Remarks

The unit string of an IProgressStatus object doesn’t change after the object is created. Its
value is usually the same in all IProgressStatus objects of the same task instance.

3.31.6 Current

Current returns a numerical value representing the current progress state of the progress task.

Syntax
.Net

C# ulong Current { get; }

property System::UInt64 Current

++
C { System::UInt64 get(); }
VB | ReadOnly Property Current As ULong
ObjC

- (uint64_t) current

Return Value

A numerical value representing the current progress state of the progress task. The value is
always <= End. It returns zero if End is not defined (zero).

Remarks

The value of the current progress state of an IProgressStatus object doesn’t change after the
object is created. Its value is different in subsequent IProgressStatus objects of the same task
instance.

3.31.7 End

End returns a numerical value representing the end progress state of the progress task.

Syntax
.Net

C# ulong End { get; }

property System::UInt64 End

++
c { System::UInt64 get(); }
VB ReadOnly Property End As ULong
ObjC

- (uint64 t) end

Return Value

A numerical value representing the end length or state of the progress task. It will return zero
for tasks without a defined length, such as waiting for a device to respond to a request.

Remarks

If the progress task has an undefined length, an application can still use the value returned by
ElapsedTime to provide the user with a sense of progress.

123

PHASEONE

The value of the end progress state of an IProgressStatus object doesn’t change after the
object is created. Its value is usually the same in all IProgressStatus objects of the same task
instance, but is allowed to change.

3.31.8 Percent

Percent returns the current progress state as a percent, if End is defined (not zero).

Syntax
.Net

C# double Percent { get; }

property double Percent

CHt { double get(); }
VB ReadOnly Property Percent As Double
ObjC

- (double) percent

Return Value

A floating point value representing the current progress state as a percent. This value is
equivalent to dividing Current by End. It returns 0.0 if End is undefined (zero).

Remarks

The percent value of an IProgressStatus object doesn’t change after the object is created. Its
value is different in subsequent IProgressStatus objects of the same task instance.

3.31.9 Elapsed Time

Returns the time in milliseconds since the progress task started.

Syntax
Net

C# uint ElapsedTime { get; }

property System::UInt32 ElapsedTime

++
c { System::UInt32 get(); }

VB | ReadOnly Property ElapsedTime As Ulnteger

ObjC

- (uint32 t) elapsedTime

Return Value

The time in milliseconds since the progress task started, at the moment the IProgressStatus
object was created and queued. ElapsedTime doesn’t include any time between the creation
of the object and a call to the method.

Remarks

The percent value of an IProgressStatus object doesn’t change after the object is created. Its
value is different in subsequent IProgressStatus objects of the same task instance.

3.31.10 IsDone
IsDone returns true if the progress task is complete.

124

PHASEONE

Syntax
Net

C# bool IsDone ()

C++ | bool IsDone ()

VB Function IsDone As Boolean

ObjC

- (BOOL) isDone

Return Value

A Boolean value that is true if the progress task is complete. If true, this is the last
IProgressStatus object for the progress task instance.

3.31.11 IsCancelled

Returns true if the progress task has been cancelled.

Syntax
.Net

C# bool IsCancelled()

C++ | bool IsCancelled()

VB Function IsCancelled As Boolean

ObjC

- (BOOL) isCancelled

Return Value

A Boolean value that is true if the progress task has been cancelled. If true, this is the last
IProgressStatus object for the progress task instance.

Remarks

A progress task can be cancelled internally by an object, usually in response to an error, or it
may be cancelled by calling the IProgressStatus Cancel method for the progress task instance
that the application wishes to cancel.

3.31.12 CanCancel

Returns true if the progress task can be cancelled by calling Cancel.

Syntax
Net

C# bool CanCancel ()

C++ | bool CanCancel ()

VB Function CanCancel As Boolean

ObjC

- (BOOL) canCancel

Return Value
A Boolean value that is true if the progress task can be cancelled by calling Cancel.
Remarks

This method can be used to determine if a cancel button is displayed by the application for
the progress task.

125

PHASEONE

3.31.13 Cancel
Cancels the represented progress task, if it is still active.

Syntax
Net

C# void Cancel ()

C++ | void Cancel ()

VB Sub Cancel

ObjC

‘— (void) cancel

Remarks

Not all progress tasks can be cancelled. Calls to this method are ignored if CanCancel is
false. In addition, calling cancel after the progress task is completed will have no affect.

126

PHASEONE

4 Enumeration Reference

The general enumerations not used for capabilities, properties and events are described in this
section.

4.1 EnumErrorType

EnumErrorType defines some of the possible error types that an IErrorObject can represent.
Not all error types are defined, just those commonly encountered.

kErrorType_ Unknown An unknown error type.
kErrorType System An operating system error.
kErrorType StdErrno A standard C errno error.

kErrorType_StdException | A standard C++ std::exception error.

kErrorType CaptureCore | CaptureCore errors. See Error Reference.

4.2 EnumValueType

EnumValueType defines the data type of the value represented by an IValueRead or
IValueWrite derived class.

kValueType Undefined An undefined or unknown value type.

kValueType Bool A Boolean value that can be true or false.

kValueType Int32 A signed 32-bit integer value.

kValueType UInt32 An unsigned 32-bit integer value.

kvalueType Int64 A signed 64-bit integer value.

kValueType UInt64 An unsigned 64-bit integer value.

kValueType Float64 A 64-bit floating-point value.

kValueType String A Unicode string value.

kValueType Enum An enumeration value compatible with a signed/unsigned 32-bit integer.
kValueType Point A coordinate point (x, y) specified by two signed 32-bit integer values.
kValueType PointFloat A coordinate point (x, y) specified by two 64-bit floating-point values.
kValueType Area An area size (width, height) specified by two signed 32-bit integer values.
kValueType AreaFloat An area size (width, height) specified by two 64-bit floating-point values.
kValueType Rect A rectangle (x, y, width, height) specified by four signed 32-bit integer values.
kValueType RectFloat A rectangle (X, y, width, height) specified by four floating-point values.
kValueType ColorRGB A RGB color triplet specified by three unsigned 32-bit integer values.
kValueType ColorRGBFloat | A RGB color triplet specified by three 64-bit floating-point values.
kValueType ColorARGB An ARGB color quadruplet specified by four unsigned 32-bit integer values.
kvalueType ColorARGBFloat | An ARGB color quadruplet specified by four 64-bit floating-point values.

127

PHASEONE

4.3 EnumListAccess

EnumListAccess defines the list access rights that a caller has for an object of a list class
derived from 10bjectList. EnumListAccess values can be combined together in a bitmask.

kListAccess View The list object may be iterated and items may be retrieved for viewing.

kListAccess_Modify | The list object may be iterated and items may be retrieved for modifying.

kListAccess_Insert | New items may be added to the list object.

kListAccess_Remove | |tems may be removed from the list object.

kListAccess_All All the above access rights.

4.4 EnumCaptureCoreName

EnumCaptureCoreName defines the name strings that can be returned by some CaptureCore
Name methods.

A vendor specific name string, provided by the manufacturer associated with the

kCaptureCoreName Vendor .
- object.

kCaptureCoreName_Long A name string provided by Phase One.

A short name string, provided by Phase One, that is guaranteed to be 20

kCaptureCoreName Short
- characters or less.

4.5 EnumimageType
EnumlImageType defines the image types that an image object, such as limageData, can be.

kImageType Undefined | An undefined or unknown image type.

kImageType Pixel An uncompressed pixel image.

kImageType Jpeg A JPEG image.

4.6 EnumColorType

EnumColorType defines possible color types that the pixels of an image object, such as
IImageData, can be. The order of color channels in the name of the enumeration match the
order of the color channels in the pixel.

kColorType_Undefined | An undefined or unknown color type.

kColorType RGB_8 Red, green, blue. 8-bits per channel (24-bit pixel).
kColorType BGR 8 Blue, green, red. 8-bits per channel (24-bit pixel).
kColorType RGBA_8 Red, green, blue, alpha. 8-bits per channel (32-bit pixel).
kColorType BGRA_8 Blue, green, red, alpha. 8-bits per channel (32-bit pixel).
kColorType ARGB 8 Alpha, red, green, blue. 8-bits per channel (32-bit pixel).
kColorType ABGR 8 Alpha, blue, green, red. 8-bits per channel (32-bit pixel).
kColorType RGB 16 Red, green, blue. 16-bits per channel (48-bit pixel).
kColorType BGR 16 Blue, green, red. 16-bits per channel (48-bit pixel).

128

PHASEONE

4.7 EnumlmageOrientation

EnumlImageOrientation defines the orientations that an image object, such as limageData,
can have.

kImageOrientation 0 The image capture device was rotated 0 degrees (i.e. not rotated).
kImageOrientation 90 The image capture device was rotated 90 degrees clockwise.
kImageOrientation 180 The image capture device was rotated 180 degrees.
kImageOrientation 270 The image capture device was rotated 270 degrees clockwise.

The first pixel row/column is the top/left edge of the image.

kImageOrientation TopLeft
- The same as kImageOrientation 0.

The first pixel row/column is the right/top edge of the image.

kImageOrientation RightTop
- The same as kImageOrientation 90.

The first pixel row/column is the bottom/right edge of the image.

kImageOrientation BottomRight
- The same as kImageOrientation 180.

The first pixel row/column is the left/bottom edge of the image.

kImageOrientation LeftBottom
- The same as kImageOrientation 270.

4.8 EnumCameraType

EnumCameraType defines the camera types that an ICamera object can have, and that can be
retrieved by the kCameraProperty_Type property.

kCameraType DB A digital back.

kCameraType DSLR | A DSLR (digital single lens reflex) camera.

4.9 EnumCameraRestore

EnumCameraRestore defines the device components that an ICamera object can have, and
that can be restored by the RestoreDefault method.

kCameraRestore All Restores all settings for the device.

Restores only the digital back settings. This value is only applicable if the

kCameraRestore DigitalBack . : b
- device associated with an ICamera object is a digital back.

Restores only the camera body settings. This value is only applicable if the
kCameraRestore_Camera device associated with an ICamera object is a digital back, and a camera body
is attached.

129

PHASEONE

4.10 EnumCameraOrientationMode

EnumCameraOrientationMode defines the possible orientation modes that an ICamera object
can be set to via the kCameraProperty_CameraOrientationMode. The mode used during the
capture of an image is stored in kCapturelmageProperty_CameraOrientationMode.

kCameraOrientationMode Undefined | An undefined or unknown camera orientation mode.

kCameraOrientationMode Auto Use the internal orientation sensor to determine orientation.

Set the orientation to 0 degrees.

kCameraOrientationMode 0 . B .
- Do not use the internal orientation sensor.

Set the orientation to 90 degrees clockwise.

kCameraOrientationMode 90 . . .
- Do not use the internal orientation sensor.

Set the orientation to 180 degrees.

kCameraOrientationMode 180 . . .
- Do not use the internal orientation sensor.

Set the orientation to 270 degrees clockwise.

kCameraOrientationMode 270 . . .
- Do not use the internal orientation sensor.

4.11 EnumFocusAdjustDiscrete

EnumFocusAdjustDiscrete defines a set of discrete adjustments to a devices focus, that can be
set via an ICamera object using the kCameraProperty FocusAdjustDiscrete property.

kFocusAdjust_NearEnd Adjusts the focus to the closest possible focus distance.

kFocusAdjust_NearCoarse | Adjusts the focus closer (near direction) by a coarse (large) step.

kFocusAdjust_NearMedium | Adjusts the focus closer (near direction) by a medium step.

kFocusAdjust NearFine Adjusts the focus closer (hear direction) by a fine (small) step.

Does not adjust the focus. This value is always returned by a call to GetValue on

k dj . .
FocusAdjust_None the kCameraProperty FocusAdjustDiscrete property.

kFocusAdjust_FarFine Adjusts the focus farther away (far direction) by a fine (small) step.

kFocusAdjust_FarMedium | Adjusts the focus farther away (far direction) by a medium step.

kFocusAdjust_FarCoarse | Adjusts the focus farther away (far direction) by a large step.

kFocusAdjust FarEnd Adjusts the focus to the farthest possible focus distance (usually infinite).

4.12 EnumFmcMode

EnumFmcMode defines the possible forward motion compensation modes that an 1Camera
object can be set to via the kP1CameraProperty FmcMode. The mode used during the
capture of an image is stored in kP1CapturelmageProperty FmcMode.For aerial industrial
devices only.

kFmcMode Off Disable forward motion compensation system

kFmcMode_Forward | Enable forward motion compensation system in forward direction

kFmcMode_Backward | Enable forward motion compensation system in backward direction

130

PHASEONE

131

PHASEONE

5 Error Reference

CaptureCore returns errors via the IErrorObject interface. CaptureCore can return different types of errors, depending upon the source of the
error. Some errors originate in the operating system, some within a development framework, some from device drivers, and some from
CaptureCore itself. For each type of error, there are many possible errors, each with their own unique error number for that type. Error numbers
are not unique across different error types.

It is beyond the scope of this document to describe all the errors for error types originating outside of CaptureCore. Generally, the IErrorObject
provides enough description strings to display the error to the user. However, in some situations it may be of use to the application to test for a
specific CaptureCore error. The following table lists the error enumerations for CaptureCore errors. CaptureCore errors have the error type
kErrorType_CaptureCore (see EnumErrorType).

5.1 CaptureCore Errors

General (EnumCaptureCoreError)

kCaptureCoreError_InvalidParameter The parameter is incorrect or not supported.

kCaptureCoreError InvalidType

The data type is incorrect or not supported.

kCaptureCoreError InvalidData

The data is invalid.

kCaptureCoreError OutOfRange

The value is out of range.

kCaptureCoreError InvalidSize

The size or length is incorrect.

kCaptureCoreError InvalidIndex

The index or identifier is incorrect.

kCaptureCoreError InvalidSyntax

The syntax is incorrect.

kCaptureCoreError NotImplemented

The functionality is not implemented.

kCaptureCoreError_ InvalidRequest

The request is invalid.

kCaptureCoreError_ InvalidState

The current state is incorrect.

kCaptureCoreError NotSupported

The resource or request is not supported.

kCaptureCoreError NotAvailable

The resource or request is currently not available.

kCaptureCoreError NotInitialized

The resource is not initialized.

kCaptureCoreError AlreadylInitialized

The resource is already initialized.

kCaptureCoreError NotOpen

The resource is not open.

kCaptureCoreError AlreadyOpen

The resource is already opened.

132

PHASEONE

kCaptureCoreError AccessDenied

Access is denied. The resource or request is not available.

kCaptureCoreError AccessDeniedWrite

Access is denied. The value or resource cannot be set or written to.

kCaptureCoreError AccessDeniedRead

Access is denied. The value or resource cannot be retrieved or read from.

kCaptureCoreError NotConnected

The resource is not connected.

kCaptureCoreError NotEnoughMemory

Not enough memory is available.

kCaptureCoreError UnexpectedError

An unexpected error occurred.

kCaptureCoreError UnexpectedException

An unexpected exception occurred.

kCaptureCoreError UnexpectedResult

An unexpected result occurred.

kCaptureCoreError LimitExceeded

A limit is exceeded.

kCaptureCoreError NotFound

The name, item, or resource is not found.

kCaptureCoreError Timeout

The request did not complete within the specified timeout period.

kCaptureCoreError UnspecifiedError

Unspecified error.

kCaptureCoreError CameraNotConnected

The camera is not connected.

Phase One device specific (EnumPhaseOneCaptu

reCoreError)

kP1CaptureCoreError HostStorageMode

The camera is not configured for IEEE 1394 storage.

kP1CaptureCoreError_ MacCreateLocalIsochPortError

Mac OS only. Could not create local isochronous port. There is insufficient memory below the 2GB memory
boundary for the operating system to setup an isochronous FireWire transfer port between the host and the
device.

133

PHASEONE

6 Capability Reference

The following tables list the defined capabilities for each class that supports them. The tables list the typical value type for each capability,
however, capabilities are not required to be of this value type. An application should be prepared to handle any value type for each capability, or
at the very least ignore gracefully a capability with a value type different than expected. A string value can always be retrieved for each
capability, regardless of the actual value type.

6.1 ICamera (P1CaptureCore_Camera)

Typical

Capabilit Description
P y Value Type P
General (EnumCameraCapabilityId)
If true, general capturing functionality is supported, such as StartCapture, StopCapture,
kCameraCapability Capture Bool PauseCapture, GetNextCapturelmage, GetCapturelmageQueue, and MaxCaptureQueueSize
methods.
kCameraCapability_ PauseCapture Bool If true, the PauseCapture method is supported.

If true, the bPauseTransfer parameter of PauseCapture method is supported, allowing it to pause

kCameraCapability PauseCaptureAndTransfer Bool
P = P the transfer of images in addition to pausing their capture.

If true, the bWaitOnPending parameter of the StopCapture method is supported, allowing it to

kCameraCapability WaltOnPending Bool optionally wait on pending images before stopping capture.

kCameraCapability PendingImageCount Bool If true, the PendinglmageCount method is supported.

kCameraCapability ShutterRelease Bool If true, the ShutterRelease method is supported.

kCameraCapability MaxCaptureQueueSize Bool If true, the maximum capture queue size can be set via the MaxCaptureQueueSize methods.
kCameraCapability RestoreDefault Bool If true, the RestoreDefault method is supported.

kCameraCapability LiveView Bool If true, this device supports Live View functionality.

Phase One device SpECifiC (EnumPhaseOneCameraCapabilityId)

kP1lCameraCapability ColorRGB Bool If true, this is a RGB color device.

kP1CameraCapability ColorBW Bool If true, this is a monochrome color device.

134

6.2 ICapturelmage (P1CaptureCore_Capturelmage)

Capability ‘ Typical Value Type ‘ Description

General (EnumCaptureImageCapabilityId)

kCaptureImageCapability Thumbnail ‘ Bool

‘ If true, the GetThumbnail method is supported.

135

PHASEONE

PHASEONE

7 Property Reference

The following tables list the defined properties for each class that supports them. The tables list the typical value type for each property,
however, properties are not required to be of this value type. An application should be prepared to handle any value type for each property, or at
the very least ignore gracefully a property with a value type different than expected. A string value can always be retrieved for each property,
regardless of the actual value type.

The tables also list the typical access an application has to each property, read-only or read/write. A property may be read-only on one device,
read/write on another, or not even present. The application should be prepared to handle missing properties or properties with a different access
than expected.

7.1 ICaptureProvider (P1CaptureCore_CaptureProvider)

Property ‘ Typical Value Type ‘ Typical Access ‘ Description

General (EnumCaptureProviderPropertyId)

kCaptureProviderProperty ManufacturerName ‘ String ‘ Read ‘ Manufacturer’s name.

136

PHASEONE

7.2 ICamera (P1CaptureCore_Camera)
Typical Typical "

Property Vﬁ)ue Type A)écr:)ess Description
General (EnumCameraPropertyId)
kCameraProperty ManufacturerName String Read Manufacturer’s name.
kCameraProperty Model String/Enum Read Device model.
kCameraProperty_ SerialNumber String/Number | Read Serial number.
kCameraProperty FirmwareVersion String/Number | Read Firmware version.
kCameraProperty Description String Read Description of the device.
kCameraProperty Type Enum Read The type of camera device. See EnumCameraType.
kCameraProperty MaxTransferSpeed Uint64 Read Maximum transfer speed in bytes per second.
kCameraProperty NumberOfImagesTaken Ulint32 Read Current number of images taken by the device.
kCameraProperty BatteryStatus Float64 Read Current charge level of the device battery.
kCameraProperty BatteryChargingStatus Bool Read Charging status of the device battery. True if currently charging.
kCameraProperty HostMaxCaptureQueueSize uUlInt32 Read/Write erxg]:;tlﬂggugﬂ?;i; ?‘rfu;tmhggzs to queue on the host. Same as
kCameraProperty HostStorageCapacity Ulint64 Read/Write | Number of available bytes on the host for storing images.
kCameraProperty ImageSize String/Enum Read/Write | The size of an image (e.g. large, medium, small). Related to resolution.
kCameraProperty ImageArea String/Enum Read/Write | The physical area on the sensor to acquire images with.
kCameraProperty WhiteBalanceMode String/Enum Read/Write | The white balance mode to use during capture (e.g. Auto, Flash, Daylight, etc.)
kCameraProperty WhiteBalance ColorRGBEloat | Read The cyrrent white balance value in the current white balance mode. May be

- undefined for non-custom modes.
kCameraProperty WhiteBalanceCustoml ColorRGBFloat | Read/Write | The white balance value for the Custom 1 white balance mode.
kCameraProperty WhiteBalanceCustom2 ColorRGBFloat | Read/Write | The white balance value for the Custom 2 white balance mode.
kCameraProperty WhiteBalanceCustom3 ColorRGBFloat | Read/Write | The white balance value for the Custom 3 white balance mode.
kCameraProperty FileFormat Enum Read/Write | The file format of captured images.
kCameraProperty ImageCompression Enum Read/Write | Image compression setting (e.g. 11Q L or 11Q S).
kCameraProperty ImageMaximumSize Ulnt32 Read Maximum size in bytes of an image for this device (worst case).
kCameraProperty_ImageTypicalSize Ulnt32 Read Typical size in bytes of an image for the current settings.

137

PHASEONE

Typical Typical .
Propert Description
perty Value Type | Access b
KCameraProperty ThumbnailMaxDimension Ulnt32 Read/Write The defgult maximum dimension in pixels of generated and embedded thumbnail
images in captured images.
kCameraProperty ExposurelISO UInt32/Enum Read/Write | Exposure 1SO (e.g. I1SO 100).
kCameraProperty ShutterSpeed Float64/Enum Read/Write | Shutter speed in seconds (e.g. 1.4 s or 1/125 s).
kCameraProperty Aperture Float64/Enum Read/Write | Aperture value in f-stops (e.g. f/22).
kCameraProperty ExposureBias Float64/Enum Read/Write | Exposure bias in exposure steps (e.g. -1.5 or 3.0).
kCameraProperty ExposureMode Enum Read/Write | Exposure mode (e.g. Auto, Manual, Auto bracket).
Exposure step setting for kCameraProperty ExposureProgram,
kCameraProperty ExposureStep Enum Read/Write | kCameraProperty Aperture, and kCameraProperty ExposureBias properties (e.g. 1,
1/2, or 1/3).
kCameraProperty_ExposureProgram Enum Read/Write | Exposure program (e.g. P, Av, Tv or M).
kCameraProperty FExposureMeteringMode Enum Read/Write | Exposure metering mode.
kCameraProperty ExposureMeterValue Float64 Read Exposure meter value.
Allows specification of the camera orientation (Auto, 0, 90, 180, 270). In Auto mode
CAmerAPrOberty Cameratriontat iontode Enum Read/Write (the default), the camera orientation is determined by a rotation sensor in the device.
PerEY The image orientation is determined by both the source orientation and the camera
orientation. See EnumCameraOrientationMode.
kCameraProperty FlashMode Enum Read/Write | Flash mode.
kCameraProperty MirrorUp Bool Read/Write Mirror up.
kCameraProperty AutoFocusMode Enum Read/Write | Auto-focus mode.
kCameraProperty DriveMode Enum Read/Write | Drive mode.
kCameraProperty ShutterMode Enum Read/Write | Shutter mode.
Allows the focus to be adjusted in discrete steps defined by an enumeration. This
K CameraPronerty FocusAdiustbiscroto Enum Read/Write property only adjusts the focus it does not set it to a specific absolute value. When
PerEY J this property is read the adjustment value is always zero. When this property is set
the focus is adjusted by the adjustment value associated with the enumeration.
Allows the focus to be adjusted by any value. This property only adjusts the focus it
kCameraProperty FocusAdjustContinuous Int32 Read/Write | does not set it to a specific absolute value. When this property is read the adjustment
value is always zero. When this property is set the focus is adjusted by the set value.
kCameraProperty BodyManufacturer String Read On digital back camera systems, the manufacturer of the attached camera body.

138

PHASEONE

Property ;I'/yplcal Typical Description
alue Type | Access
kCameraProperty_ BodyModel String Read On digital back camera systems, the model of the attached camera body.
kCameraProperty_BodySerialNumber String Read On digital back camera systems, the serial number of the attached camera bodly.
kCameraProperty BodyFirmwareVersion String Read On digital back camera systems, the firmware version of the attached camera body.
kCameraProperty_ LensManufacturer String Read The manufacturer of the attached lens.
kCameraProperty_ LensModel String Read Model of the attached lens.
kCameraProperty LensSerialNumber String Read Serial number of the attached lens.
kCameraProperty LensFirmwareVersion String Read Firmware version of the attached lens.
kCameraProperty LensFocallength Float64 Read Focal length of the attached lens.
kCameraProperty Language Enum Read/Write | Language displayed on the device.
kCameraProperty RemotelLanguage Enum Read/Write | Language used for properties for this device.
kCameraProperty DateTime Ulint32 Read/Write | Current date/time, in seconds since January 1st, 1970 0:00.
kCameraProperty DisplayBrightness Float64 Read/Write | Display brightness setting.
kCameraProperty DisplaySleep Enum Read/Write | Display sleep setting.
kCameraProperty DeviceSleep Enum Read/Write | Device sleep setting.
Phase One device specific (EnumPhaseOneCameraPropertyId)
kPlCameraProperty MainCodeVersion String Read Main code (firmware) version.
kPlCameraProperty BootCodeVersion String Read Boot code version.
kPlCameraProperty FPGACodeVersion String Read FPGA code version.
kP1lCameraProperty CPLDCodeVersion String Read CPLD code version.
kP1lCameraProperty PAVRCodeVersion String Read PAVR code version.
kPlCameraProperty UAVRCodeVersion String Read UAVR code version.
kPlCameraProperty TGENCodeVersion String Read TGEN code version.
kP1CameraProperty HardwareConfig UlInt32 Read Hardware configuration value.
kPlCameraProperty SensorType Enum Read Sensor type.
kPlCameraProperty SensorBaseISO Ulnt32 Read Lowest ISO value.
kP1CameraProperty_ SensorTemperature Float64 Read The current sensor temperature in degrees Celsius.
kP1CameraProperty SensorCalibrated Bool Read True if the sensor is calibrated.
kP1CameraProperty SensorCalibrationDateTime | UINnt32 Read The date/time the sensor was calibrated, in seconds since January 1st, 1970 0:00.

139

PHASEONE

Typical Typical I
Property VZliljue Type A?:/cF:)ess Description
kP1CameraProperty SensorArea Area Read Dimensions of the sensor in pixels.
KPlCameraProperty SensorActiveRect Rect Read SAé%tSl\étra xﬁ;z;lg?:?Sogxglgszznfoolrighﬁ|xels. The active rectangle is the region on the
Ini32 Read | meaaured clockwise (1o the right) fom verical. o
kP1lCameraProperty SensorWidth UlInt32 Read Obsolete: use kP1CameraProperty SensorArea.
kPlCameraProperty SensorHeight Uint32 Read Obsolete: use kP1CameraProperty SensorArea.
kP1CameraProperty_SensorActiveWidth Ulint32 Read Obsolete: use kP1CameraProperty SensorActiveRect.
kPlCameraProperty SensorActiveHeight Ulnt32 Read Obsolete: use kP1CameraProperty SensorActiveRect.
kPlCameraProperty_ SensorActiveXOffset Ulnt32 Read Obsolete: use kP1CameraProperty SensorActiveRect.
kP1CameraProperty_SensorActiveYOffset Ulint32 Read Obsolete: use kP1CameraProperty SensorActiveRect.
Dimensions of the image source in pixels. The image source represents the effective
kP1CameraProperty SourceArea Area Read capture area of the sensor in the current device mode. For example, if sub-sampling is
enabled, the image source is reduced compared to the sensor.

KPlCameraProperty SourceActiveRect Rect Read The ac'Five rectangle on the _irr_lage source in _pixels. The active rectangle is the region

- on the image source where it is exposed to light.
kPlCameraProperty SourceOrientation Int32 Read Orientatior_l of the image source relative tq the device in _degrees (0, 90, 180, 270).

- The angle is measured clockwise (to the right) from vertical.
kPlCameraProperty_ SourceWidth Ulnt32 Read Obsolete: use kP1CameraProperty SourceArea.
kP1CameraProperty SourceHeight UlInt32 Read Obsolete: use kP1CameraProperty SourceArea.
kP1CameraProperty_SourceActiveWidth Ulint32 Read Obsolete: use kP1lCameraProperty SourceActiveRect.
kPlCameraProperty_ SourceActiveHeight Ulnt32 Read Obsolete: use kP1lCameraProperty SourceActiveRect.
kPlCameraProperty_SourceActiveXOffset Ulint32 Read Obsolete: use kP1CameraProperty SourceActiveRect.
kP1CameraProperty_SourceActiveYOffset Ulint32 Read Obsolete: use kP1lCameraProperty SourceActiveRect.
kPlCameraProperty ManufacturerId Uln32 Read A number identifying the device manufacturer.
kP1CameraProperty Modelld Uln32 Read A number identifying the device model.
kPlCameraProperty MountId UlIn32 Read A number identifying the mount interface of a digital back.
kP1CameraProperty MountInterface String Read A string identifying the mount interface of a digital back.
kPlCameraProperty_ShutterCounterFocalPlane | UInt32 Read The cycle count of the camera body focal plane shutter, if present.

140

PHASEONE

Typical Typical .
Propert Description
perty Value Type | Access b
kPlCameraProperty ShutterCounterLeaf Ulint32 Read The cycle count of the lens leaf shutter, if present.
kP1CameraProperty ApertureCounter Ulint32 Read The cycle count of the lens aperture.
kP1CameraProperty MirrorWinderCounter Ulnt32 Read The cycle count of the camera body mirror and winder mechanism.
kP1CameraProperty WhiteBalanceRed Float64 Read/Write | Obsolete: use kCameraProperty WhiteBalance.
kPlCameraProperty WhiteBalanceGreen Float64 Read/Write | Obsolete: use kCameraProperty WhiteBalance.
kP1CameraProperty WhiteBalanceBlue Float64 Read/Write | Obsolete: use kCameraProperty WhiteBalance.
kPlCameraProperty CameraOrientationMode Enum Read/Write | Obsolete. Use kCameraProperty CameraOrientationMode.
kPlCameraProperty SensorPlus Enum Read/Write | Sensor+ mode.
Disables updating of the black calibration. To improve image quality, a black
. . calibration image is sometimes captured following a normal capture. If this property
kP1C bleBlackUpd ; . L - L
Flamerabroperty_DisableBlackUpdate Bool Read/Write | 3¢’ <ot to true, the camera will not update the black calibration, which will increase the
sustained capture rate, but there is a risk of reduced image quality.
Controls generation of black calibration. Black calibration can be suppressed, forced,
or set to auto (default). To improve image quality, a black calibration image is
sometimes captured following a normal capture. If this property is set to suppressed,
kP1CameraProperty BlackCalibrationMode Enum Read/Write | the camera will not update the black calibration, which will increase the sustained
capture rate, but there is a risk of reduced image quality. If this property is set to
forced, the black calibration will be updated for every capture. The default is to let
the back decide when a black calibration is necessary.
Controls whether the values of the camera control properties
(kCameraProperty_ExposureProgram, kCameraProperty_Aperture,
KP1Camerabroperty UseRemoteCaptureSettings | Bool Read/Write kCameraPr_operty_ExposureBlas, and kCameraProperty ExposureStep) or the
- current settings on the camera are used for remote captures. Remote captures are
those made via a ShutterRelease call and not via the camera. Set to true to use the
camera control properties.
If true, enables safe mirror up mode, which delays some of the internal timing of the
kPlCameraProperty_ SafeMirrorUp Bool Read/Write | “mirror up” functionality, and is necessary for proper functioning in some situations.
Primarily for H 20 models.
kP1CameraProperty PowerMode Enum Read/Write | Power mode setting of the device (e.g. normal, low or ultra low).
kPlCameraProperty_ShutterLatency Enum Read/Write | Shutter latency setting of the device (e.g. long/normal or short/zero).
kPlCameraProperty BatteryChargeMode Enum Read/Write | Battery charging mode.

141

PHASEONE

Property ;r/ﬁ:ga':'ype ;zgég:u Description

kP1CameraProperty AutoPreviewMode Enum Read/Write | Auto-preview mode

kP1CameraProperty ReadyBeep Enum Read/Write | Ready beep setting.

kP1CameraProperty CameraMode Enum Read/Write | Camera mode.

kP1lCameraProperty StorageMode Enum Read/Write | Storage mode.

kPlCameraProperty FmcMode Enum Read/Write | Forward motion compensation mode setting. For aerial industrial devices only.
KP1CameraProperty FmeSpeed Float64 Read/Write Sgsilirgg Zﬁ?;.d in knots for forward motion compensation system. For aerial industrial
KP1CameraProperty FmeGsd Float64 Read/Write ﬁ;oui?g;a(;gsliicrg ginslt;hce in cm for forward motion compensation system. For aerial
kP1CameraProperty GpsEnable Bool Read/Write | GPS control.

kPlCameraProperty GpsReceiver Enum Read/Write | GPS receiver (e.g. NMEA device, NovAtel device, Applanix device, Internal, etc.)

142

7.3 ICapturelmage (P1CaptureCore_Capturelmage)

PHASEONE

Typical Typical .

Property VZIIIOue Type A)é(r:)ess Description
General (EnumCaptureImagePropertyId)
kCaptureImageProperty ManufacturerName String Read Manufacturer’s name.
kCaptureImageProperty_ Model String/Enum Read Device model.
kCaptureImageProperty_SerialNumber String/Number Read Serial number.
kCaptureImageProperty FirmwareVersion String/Number Read Firmware version.
kCaptureImageProperty DeviceDescription String Read Description of the device.
kCaptureImageProperty SoftwareDescription String Read Description of the software used to capture the image.
kCaptureImageProperty PlatformDescription String Read Description of the host platform the image was captured on.
kCaptureImageProperty Dimensions Area Read The dimensions (width/height) of the image in pixels.
kCaptureImageProperty ActiveRect Rect Read Tr_\e factive _rectangle of the i_mage in pixels. The act?ve rectangle is the region

- within the image where the image was exposed to light.
kCaptureImageProperty ImageOrientation Int32 Read Orientation of the image relative to the device in degrees (0, 90, 180, 270).
kCaptureImageProperty Width Ulnt32 Read Obsolete: use kCaptureImageProperty Dimensions.
kCaptureImageProperty Height UlInt32 Read Obsolete: use kCaptureImageProperty Dimensions.
kCaptureImageProperty ActiveWidth UlInt32 Read Obsolete: use kCaptureImageProperty ActiveRect.
kCaptureImageProperty ActiveHeight Ulnt32 Read Obsolete: use kCaptureImageProperty ActiveRect.
kCaptureImageProperty ActiveXOffset UlInt32 Read Obsolete: use kCaptureImageProperty ActiveRect.
kCaptureImageProperty ActiveYOffset UlInt32 Read Obsolete: use kCaptureImageProperty ActiveRect.
kCaptureImageProperty WhiteBalanceMode Enum Read The active white balance mode when the image was captured.
KCaptureImageProperty WhiteBalance ColorRGBEloat | Read x\allr;g(\a/éaar;l]?)r:fjr.e%s%uril(lj)]/;?ésér:s;r?éeglxatlng point numbers representing the
kCaptureImageProperty FileFormat Enum Read Image file format.
kCaptureImageProperty ImageCompression Enum Read Image compression setting (e.g. I1Q L or 11Q S).
kCaptureImageProperty ImageSize String/Enum Read Size of the image as a setting (e.g. large, medium, small).
kCaptureImageProperty FileSize UlInt32 Read Size of the image in bytes.

143

PHASEONE

Typical Typical —
Property ngue Type A?:/cF:)ess Description
kCaptureImageProperty ThumbnailMaxDimension UlInt32 Read The maximum dimension of generated and embedded thulmbnaill imaggs. Note:
- mlght be read-only. See also kCameraProperty ThumbnailMaxDimension.
kCaptureImageProperty ThumbnailDimensions Area Read The dimensions (width/height) in pixels of the embedded thumbnail image
kCaptureImageProperty ThumbnailWidth UlInt32 Read Obsolete: use kCaptureImageProperty ThumbnailDimensions.
kCaptureImageProperty ThumbnailHeight Ulnt32 Read Obsolete: use kCaptureImageProperty ThumbnailDimensions.
kCaptureImageProperty ThumbnailSize Uint32 Read The size in bytes of the embedded thumbnail image.
kCaptureImageProperty DefaultFilenameExtension | String Read Default file name extension (e.g. iiq or tif).
kCaptureImageProperty ExposureISO UInt32/Enum Read Exposure 1SO (e.g. 1SO 100).
kCaptureImageProperty ShutterSpeed Float64/Enum Read Shutter speed in seconds (e.g. 1.4 s or 1/125 s).
kCaptureImageProperty ShutterSpeedApexValue Float64 Read Shutter speed as APEX value: Log2(1/ speed)
kCaptureImageProperty Aperture Float64/Enum Read Aperture value in f-stops (e.g. f/22).
kCaptureImageProperty ApertureApexValue Float64 Read Aperture as APEX value: Log2(aperture”2)
kCaptureImageProperty ExposureBias Float64 Read Exposure bias in exposure steps (e.g. -1.5 or 3.0).
kCaptureImageProperty ExposureMode Enum Read Exposure mode (e.g. Auto, Manual, Auto bracket).
kCaptureImageProperty ExposureProgram Enum Read Exposure program (e.g. P, Av, Tv or M).
The camera orientation mode at the time of capture (Auto, 0, 90, 180, 270). In
kCaptureImageProperty CameraOrientationMode Enum Read Auto m_ode (the d_efault), the camera orifantati_on was deterr_nined by a rotation
- sensor in the device. The final image orientation is determined by both the source
orientation and the camera orientation. See EnumCameraOrientationMode.
kCaptureImageProperty Focallength Float64 Read Focal length in mm.
kCaptureImageProperty Timestamp Uint64 Read Timestamp for this image, in seconds since January 1st, 1970 0:00.
kCaptureImageProperty CameraCaptureNumber UlInt32 Read Capture number for this image set by the device.
kCaptureImageProperty SoftwareCaptureNumber Uint32 Read CaptureCore generated capture number for this image.
Device angle in degrees at the time the image was captured. The angle is
kCaptureImageProperty CameraAngle Float64 Read measured clockwise (to the right) from vertical. For example, rotating the device
to left will result in a camera angle of 270.0 or -90.0 degrees.
kCaptureImageProperty GpsLatitude Float64 Read GPS latitude in signed degrees.
kCaptureImageProperty GpsLongitude Float64 Read GPS longitude in signed degrees.
kCaptureImageProperty GpsAltitude Float64 Read GPS altitude in signed meters.

144

PHASEONE

Typical Typical —
Propert Description
perty Value Type | Access b

. GPS time stamp for this image, in milliseconds since January 1st, 1970 0:00,
kCaptureImageProperty GpsTimeStampUTC Uint64 Read UTC timescale.

. GPS time for this image in weeks since Jan 6th 1980, timescale according to
KCapturenageProperty GpsTimeWeekNumber Uint32 Read value of the kCapturelmageProperty GpsTimescale property.

. GPS time for this image in seconds into the week, timescale according to value of
KCapturenageProperty GpsTimeSecondsoffeek Float64 Read the kCapturelmageProperty GpsTimescale property.
kCaptureImageProperty GpsTimescale Enum Read GPS time timescale (e.g. UTC or GPS).
kCaptureImageProperty GpsUtcOffset Int32 Read Difference between the GPS time and UTC (leap seconds).
kCaptureImageProperty GpsMarkInputEventID Ulnt32 Read GPS input event id. The GPS event id is used to synchronize images to a log of

the GPS device at a later point in time.

Phase One device specific (EnumPhaseOneCaptureImagePropertyId)

kPlCaptureImageProperty HardwareConfig UlInt32 Read A device specific hardware configuration value.

kPlCaptureImageProperty SensorType Enum Read Sensor type.

kPlCaptureImageProperty SensorBaseISO Ulnt32 Read Lowest 1SO value.

kPlCaptureImageProperty SensorTemperature Float64 Read The sensor temperature during image capture in degrees Celsius.

kPlCaptureImageProperty SensorArea Area Read Dimensions of the sensor in pixels.

kP1CaptureImageProperty SensorActiveRect Rect Read Active rectanglg on the sensor_in pixels. The active rectangle is the region on the
- sensor where it is exposed to light.

kPlCapturelmageProperty SensorOrientation Int32 Read Orient_ation of the sensor r_elative to the device in de_grees (0, 90, 180, 270). The
- angle is measured clockwise (to the right) from vertical.

kPlCaptureImageProperty SensorWidth UlInt32 Read Obsolete: use kP1lCaptureImageProperty SensorArea.

kPlCaptureImageProperty SensorHeight UlInt32 Read Obsolete: use kP1CaptureImageProperty SensorArea.

kP1CaptureImageProperty_SensorActiveWidth UlInt32 Read Obsolete: use kP1lCaptureImageProperty SensorActiveRect.

kPlCapturelImageProperty SensorActiveHeight UlInt32 Read Obsolete: use kP1lCaptureImageProperty SensorActiveRect.

kP1lCaptureImageProperty SensorActiveXOffset UlInt32 Read Obsolete: use kPlCaptureImageProperty SensorActiveRect.

kPlCaptureImageProperty_SensorActiveYOffset UlInt32 Read Obsolete: use kP1lCaptureImageProperty SensorActiveRect.

Dimensions of the image source in pixels. The image source represents the
kPlCaptureImageProperty SourceArea Area Read effective capture area of the sensor in the current device mode. For example, if

sub-sampling is enabled, the image source is reduced compared to the sensor.

145

PHASEONE

Property ;I'/yplcal Typical Description
alue Type | Access

KPlCaptureImageProperty SourceActiveRect Rect Read The_ active rec_tangle on the image source in pixels._The active rectangle is the

- region on the image source where it is exposed to light.
KP1CaptureImageProperty SourceOrientation Int32 Read Orientatior_l of the image source relative tq the device in _degrees (0, 90, 180, 270).

- The angle is measured clockwise (to the right) from vertical.
kP1CaptureImageProperty SourceWidth UlInt32 Read Obsolete: use kpP1lCaptureImageProperty SourceArea.
kPlCaptureImageProperty SourceHeight UiInt32 Read Obsolete: use kpP1lCaptureImageProperty SourceArea.
kP1CaptureImageProperty_SourceActiveWidth UlInt32 Read Obsolete: use kP1lCaptureImageProperty SourceActiveRect.
kPlCaptureImageProperty SourceActiveHeight Ulnt32 Read Obsolete: use kP1lCaptureImageProperty SourceActiveRect.
kPlCaptureImageProperty SourceActiveXOffset Ulnt32 Read Obsolete: use kPlCaptureImageProperty SourceActiveRect.
kPlCaptureImageProperty SourceActiveYOffset Uint32 Read Obsolete: use kP1lCaptureImageProperty SourceActiveRect.
kPlCaptureImageProperty WhiteBalanceRed Float64 Read Obsolete: use kCaptureImageProperty WhiteBalance.
kPlCaptureImageProperty WhiteBalanceGreen Float64 Read Obsolete: use kCaptureImageProperty WhiteBalance.
kP1CaptureImageProperty WhiteBalanceBlue Float64 Read Obsolete: use kCaptureImageProperty WhiteBalance.
kPlCapturelImageProperty CameraOrientationMode Enum Read Obsolete. use kCaptureImageProperty CameraOrientationMode.
kPlCaptureImageProperty SensorPlus Enum Read The Sensor+ mode the image was captured in.
kPlCaptureImageProperty IntegrationTime Ulint32 Read The time in milliseconds that the sensor was active during image capture.
kPlCaptureImageProperty WhiteBalanceMode Enum Read Obsolete: use kCaptureImageProperty WhiteBalanceMode.
kPlCaptureImageProperty HardwareGain UlInt32 Read Phase One specific hardware gain.
kPlCaptureImageProperty SoftwareGain UlInt32 Read Phase One specific software gain.
kPlCaptureImageProperty PreCompressionGain UlInt32 Read Phase One specific pre-compression gain.
kPlCaptureImageProperty ProcessingFlags UlInt32 Read Phase One SpECifiC flags.
kPlCaptureIlmageProperty BlackIntegrationTime Ulnt32 Read The time in milliseconds that the sensor was active during black calibration.
kP1CaptureImageProperty BlackTemperature Float64 Read The sensor temperature during the black calibration in degrees Celsius.
kP1CaptureImageProperty BlackTimeStamp Ulnt64 Read Timestamp for the black calibration, in seconds since January 1st, 1970 0:00.
kP1CaptureImageProperty FmcMode Enum Read Forward motion compensation mode. For aerial industrial devices only.
KP1CaptureImageProperty FrcSpeed Float64 Read Ground speed in knots for forward motion compensation system. For aerial

industrial devices only.

146

PHASEONE

Typical Typical —
Propert Description
perty Value Type | Access b
kP1CaptureTmageProperty FmcGsd Float64 Read Grqun_d samp_llng d|§tance in cm for forward motion compensation system. For
aerial industrial devices only.
kP1CapturemageProperty FmcVerticalShift Ulnta2 Read Number of vertical shifts in lines performed by forward motion compensation

system. For aerial industrial devices only.

147

